Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A novel tetracycline-controlled transactivator–transrepressor system enables external control of oncolytic adenovirus replication

Abstract

The use of restricted replication-competent adenoviruses (RRCAs) inducing tumor cell-specific lysis is a promising approach in cancer gene therapy. However, the use of RRCAs in humans carries considerable risk, since after injection into the patient, further regulation or inhibition of virus replication from the outside is impossible. Therefore, we have developed a novel system allowing external pharmacological control of RRCA replication. We show here that a tumor-selective E1B-deleted RRCA can be tightly regulated by use of doxycycline (dox)-controlled adenoviral E1A gene expression, which in turn determines vector replication. RRCA replication is switched on by addition and switched off by withdrawal of dox. The system results in efficient tumor cell killing after induction by dox, whereas cells are unaffected by the uninduced system. It was also employed for efficient external control of transgene expression from cotransfected replication-deficient adenovectors. Furthermore, the use of a liver cell-specific human α1-antitrypsin (hAAT)-promoter driving a tetracycline-controlled transcriptional silencer allowed specific protection of cells with hAAT-promoter activity in the absence of dox in vitro and in vivo, delineating a new principle of ‘tissue protective’ gene therapy. The concept of external control of RRCAs may help to improve the safety of cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Suzuki K et al. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

  2. Haviv YS, Curiel DT . Conditional gene targeting for cancer gene therapy. Adv Drug Deliv Rev 2001; 53: 135–154.

    Article  CAS  PubMed  Google Scholar 

  3. Bischoff JR et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  4. Heise C et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    Article  CAS  PubMed  Google Scholar 

  5. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 1999; 73: 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hall AR, Dix BR, O'Carroll SJ, Braithwaite AW . p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med 1998; 4: 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  7. Koch P et al. Efficient replication of adenovirus despite the overexpression of active and nondegradable p53. Cancer Res 2001; 61: 5941–5947.

    CAS  PubMed  Google Scholar 

  8. Dix BR et al. Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53. Cancer Res 2000; 60: 2666–2672.

    CAS  PubMed  Google Scholar 

  9. Doronin K et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Doronin K et al. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J Virol 2001; 75: 3314–3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heise C et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  12. Fueyo J et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  PubMed  Google Scholar 

  13. Ramachandra M et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol 2001; 19: 1035–1041.

    CAS  PubMed  Google Scholar 

  14. Rodriguez R et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–2563.

    CAS  PubMed  Google Scholar 

  15. Ohashi M et al. Target gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by E1B55k-attenuated adenovirus. Biochem Biophys Res Commun 2001; 282: 529–535.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y et al. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res 2001; 61: 6428–6436.

    CAS  PubMed  Google Scholar 

  17. Takahashi M et al. E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol Ther 2002; 5: 627–634.

    Article  CAS  PubMed  Google Scholar 

  18. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 2000; 106: 763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L et al. Adenoviral Vectors with E1A regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma. Mol Ther 2002; 6: 386.

    Article  CAS  PubMed  Google Scholar 

  20. Nettelbeck DM et al. Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res 2002; 62: 4663–4670.

    CAS  PubMed  Google Scholar 

  21. Matsubara S et al. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res 2001; 61: 6012–6019.

    CAS  PubMed  Google Scholar 

  22. Yu DC et al. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59: 4200–4203.

    CAS  PubMed  Google Scholar 

  23. Hernandez-Alcoceba R, Pihalja M, Wicha MS, Clarke MF . A novel conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum Gene Ther 2000; 11: 2009–2024.

    Article  CAS  PubMed  Google Scholar 

  24. Hernandez-Alcoceba R, Pihalja M, Qian D, Clarke MF . New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther 2002; 13: 1737–1750.

    Article  CAS  PubMed  Google Scholar 

  25. Motoi F et al. Effective gene therapy for pancreatic cancer by cytokines mediated by restricted replication-competent adenovirus. Hum Gene Ther 2000; 11: 223–235.

    Article  CAS  PubMed  Google Scholar 

  26. Wildner O, Morris JC . Subcutaneous administration of a replication-competent adenovirus expressing HSV-tk to cotton rats: dissemination, persistence, shedding, and pathogenicity. Hum Gene Ther 2002; 13: 101–112.

    Article  CAS  PubMed  Google Scholar 

  27. Dix BR, Edwards SJ, Braithwaite AW . Does the antitumor adenovirus ONYX-015/dl1520 selectively target cells defective in the p53 pathway? J Virol 2001; 75: 5443–5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Younghusband HB, Tyndall C, Bellett AJ . Replication and interaction of virus DNA and cellular DNA in mouse cells infected by a human adenovirus. J Gen Virol 1979; 45: 455–467.

    Article  CAS  PubMed  Google Scholar 

  29. Avvakumov N, Mymryk JS . New tools for the construction of replication-competent adenoviral vectors with altered E1A regulation. J Virol Methods 2002; 103: 41–49.

    Article  CAS  PubMed  Google Scholar 

  30. Chong H et al. A system for small-molecule control of conditionally replication-competent adenoviral vectors. Mol Ther 2002; 5: 195–203.

    Article  CAS  PubMed  Google Scholar 

  31. Wildner O, Morris JC . The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: assessment of antitumor efficacy and toxicity. Cancer Res 2000; 60: 4167–4174.

    CAS  PubMed  Google Scholar 

  32. Urlinger S et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 2000; 97: 7963–7968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Verhoef K et al. Strict control of human immunodeficiency virus type 1 replication by a genetic switch: Tet for Tat. J Virol 2001; 75: 979–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freundlieb S, Schirra-Muller C, Bujard H . A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1999; 1: 4–12.

    Article  CAS  PubMed  Google Scholar 

  35. Witzgall R et al. The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci USA 1994; 91: 4514–4518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deuschle U, Meyer WK, Thiesen H J . Tetracycline-reversible silencing of eukaryotic promoters. Mol Cell Biol 1995; 15: 1907–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rossi FM et al. Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat Genet 1998; 20: 389–393.

    Article  CAS  PubMed  Google Scholar 

  38. Rittner K, Schultz H, Pavirani A, Mehtali M . Conditional repression of the E2 transcription unit in E1-E3-deleted adenovirus vectors is correlated with a strong reduction in viral DNA replication and late gene expression in vitro. J Virol 1997; 71: 3307–3311.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Duque PM et al. Antitumoral effect of E1B defective adenoviruses in human malignant cells. Gene Therapy 1998; 5: 286–287.

    Article  CAS  PubMed  Google Scholar 

  40. Hafenrichter DG et al. Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes. Blood 1994; 84: 3394–3404.

    CAS  PubMed  Google Scholar 

  41. Heise CC, Williams A, Olesch J, Kirn DH . Efficacy of a replication-competent adenovirus (ONYX-015) following intratumoral injection: intratumoral spread and distribution effects. Cancer Gene Ther 1999; 6: 499–504.

    Article  CAS  PubMed  Google Scholar 

  42. DeWeese TL et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61: 7464–7472.

    CAS  PubMed  Google Scholar 

  43. Reid T et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62: 6070–6079.

    CAS  PubMed  Google Scholar 

  44. Nemunaitis J et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Therapy 2001; 8: 746–759.

    Article  CAS  PubMed  Google Scholar 

  45. Ganly I et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000; 6: 798–806.

    CAS  PubMed  Google Scholar 

  46. Lehrman S . Virus treatment questioned after gene therapy death. Nature 1999; 401: 517–518.

    Article  CAS  PubMed  Google Scholar 

  47. Moran E, Mathews MB . Multiple functional domains in the adenovirus E1A gene. Cell 1987; 48: 177–178.

    Article  CAS  PubMed  Google Scholar 

  48. Sanchez TA et al. Zinc finger and carboxyl regions of adenovirus E1A 13S CR3 are important for transactivation of the cytomegalovirus major immediate early promoter by adenovirus. Am J Respir Cell Mol Biol 2000; 23: 670–677.

    Article  CAS  PubMed  Google Scholar 

  49. Mazzarelli JM, Mengus G, Davidson I, Ricciardi RP . The transactivation domain of adenovirus E1A interacts with the C terminus of human TAF(II)135. J Virol 1997; 71: 7978–7983.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rogulski KR et al. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000; 11: 67–76.

    Article  CAS  PubMed  Google Scholar 

  51. Nanda D et al. Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Cancer Res 2001; 61: 8743–8750.

    CAS  PubMed  Google Scholar 

  52. Van Linthout S, Lusky M, Collen D, De Geest B . Persistent hepatic expression of human apo A-I after transfer with a helper-virus independent adenoviral vector. Gene Therapy 2002; 9: 1520–1528.

    Article  CAS  PubMed  Google Scholar 

  53. Salucci V et al. Tight control of gene expression by a helper-dependent adenovirus vector carrying the rtTA2(s)-M2 tetracycline transactivator and repressor system. Gene Therapy 2002; 9: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  54. Fechner H et al. Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Therapy 2000; 7: 1954–1968.

    Article  CAS  PubMed  Google Scholar 

  55. Ho SN et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989; 77: 51–59.

    Article  CAS  PubMed  Google Scholar 

  56. Marienfeld U et al. ‘Autoreplication’ of the vector genome in recombinant adenoviral vectors with different E1 region deletions and transgenes. Gene Therapy 1999; 6: 1101–1113.

    Article  CAS  PubMed  Google Scholar 

  57. Edgell CJ, McDonald CC, Graham JB . Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 1983; 80: 3734–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zouboulis CC, Seltmann H, Neitzel H, Orfanos CE . Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol 1999; 113: 1011–1020.

    Article  CAS  PubMed  Google Scholar 

  59. Fechner H et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Wilhelm Sander-Stiftung to HF (2002.007.1), by the Deutsche Forschungsgemeinschaft through a Heisenberg Fellowship to WP (WP378/2-1 and 378/2-2), by a grant from the Centeon Pharmaceutical Company, by a grant of the Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin to CCZ (BgVV Z 5.1-1328-156), and by the Cardiovascular Research Center and the Research Committee of the University Medical Center Benjamin Franklin, Freie Universität Berlin.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fechner, H., Wang, X., Srour, M. et al. A novel tetracycline-controlled transactivator–transrepressor system enables external control of oncolytic adenovirus replication. Gene Ther 10, 1680–1690 (2003). https://doi.org/10.1038/sj.gt.3302051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302051

Keywords

This article is cited by

Search

Quick links