Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells

Abstract

Several clinical trials have or are being performed testing the safety and efficacy of different strains of oncolytic viruses (OV) for malignant cancers. OVs represent either naturally occurring or genetically engineered strains of viruses that exhibit relatively selective replication in tumor cells. Several types of OV have been derived from herpes simplex virus 1 (HSV1). Tumor oncolysis depends on the processes of initial OV infection of tumor, followed by subsequent propagation of OV within the tumor itself. The role of the immune responses in these processes has not been extensively studied. On the contrary, effects of the immune response on the processes of wild-type HSV1 infection and propagation in the central nervous system have been studied and described in detail. The first line of defense against a wild-type HSV1 infection in both naive and immunized individuals is provided by innate humoral (complement, cytokines, chemokines) and cellular (macrophages, neutrophils, NK cells, γδ T cells, and interferon-producing cells) responses. These orchestrate the lysis of virions and virus-infected cells as well as provide a link to effective adaptive immunity. The role of innate defenses in curtailing the oncolytic effect of genetically engineered HSV has only recently been studied, but several of the same host responses appear to be operative in limiting anticancer effects by the replicating virus. The importance of this knowledge lies in finding avenues to modulate such initial innate responses, in order to allow for increased oncolysis of tumors while minimizing host toxicity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Chiocca EA, Smith ER . Oncolytic viruses as novel anticancer agents: turning one scourge against another [In Process Citation]. Expert Opin Investig Drugs [MEDLINE record in process], 2000; 9: 311–327.

    Article  PubMed  Google Scholar 

  2. Markert JM et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial [see comments]. Gene Therapy 2000; 7: 867–874.

    CAS  Article  PubMed  Google Scholar 

  3. Rampling R et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    CAS  Article  PubMed  Google Scholar 

  4. Whitley RJ . Herpes simplex viruses. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE (eds.), Fields Virology, 3rd edn, Vol 2, pp 2297–2342. Lipincott-Raven: Philadelphia/New York, 1996.

    Google Scholar 

  5. Carroll MC, Prodeus AP . Linkages of innate and adaptive immunity. Curr Opin Immunol 1998; 10: 36–40.

    CAS  Article  PubMed  Google Scholar 

  6. Verschoor A, Brockman MA, Knipe DM, Carroll MC . Cutting edge: myeloid complement C3 enhances the humoral response to peripheral viral infection. J Immunol 2001; 167: 2446–2451.

    CAS  Article  PubMed  Google Scholar 

  7. Da Costa XJ et al. Humoral response to herpes simplex virus is complement-dependent. Proc Natl Acad Sci USA 1999; 96: 12708–12712.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Siegal FP et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284: 1835–1837.

    CAS  Article  PubMed  Google Scholar 

  9. Kadowaki N, Antonenko S, Lau JY, Liu YJ . Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 2000; 192: 219–226.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Bukowski JF, Morita CT, Brenner MB . Recognition and destruction of virus-infected cells by human gamma delta CTL. J Immunol 1994; 153: 5133–5140.

    CAS  PubMed  Google Scholar 

  11. Johnson RM et al. A murine CD4-, CD8- T cell receptor-gamma delta T lymphocyte clone specific for herpes simplex virus glycoprotein I. J Immunol 1992; 148: 983–988.

    CAS  PubMed  Google Scholar 

  12. Selin LK et al. Innate immunity to viruses: control of vaccinia virus infection by gamma delta T cells. J Immunol 2001; 166: 6784–6794.

    CAS  Article  PubMed  Google Scholar 

  13. Melchjorsen J, Pedersen FS, Mogensen SC, Paludan SR . Herpes simplex virus selectively induces expression of the CC chemokine RANTES/CCL5 in macrophages through a mechanism dependent on PKR and ICP0. J Virol 2002; 76: 2780–2788.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fawaz LM, Sharif-Askari E, Menezes J . Up-regulation of NK cytotoxic activity via IL-15 induction by different viruses: a comparative study. J Immunol 1999; 163: 4473–4480.

    CAS  PubMed  Google Scholar 

  15. Fujioka N et al. Interleukin-18 protects mice against acute herpes simplex virus type 1 infection viruses: a comparative study. J Virol 1999; 73: 2401–2409.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Feduchi E, Alonso MA, Carrasco L . Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus. J Virol 1989; 63: 1354–1359.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Croen KD . Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 1993; 91: 2446–2452.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmad A, Sharif-Askari E, Fawaz L, Menezes J . Innate immune response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction. J Virol 2000; 74: 7196–7203.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Karupiah G et al. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 1993; 261: 1445–1448.

    CAS  Article  PubMed  Google Scholar 

  20. Kodukula P et al. Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol 1999; 162: 2895–2905.

    CAS  PubMed  Google Scholar 

  21. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    CAS  Article  PubMed  Google Scholar 

  22. Lubinski JM et al. Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo. J Virol 1998; 72: 8257–8263.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lubinski J et al. In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC [published erratum appears in J Exp Med 2000 Feb 21;191(4):following 746]. J Exp Med 1999; 190: 1637–1646.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Costa J, Rabson AS, Yee C, Tralka TS . Immunoglobulin binding to herpes virus-induced Fc receptors inhibits virus growth. Nature 1977; 269: 251–252.

    CAS  Article  PubMed  Google Scholar 

  25. Dubin G et al. The role of herpes simplex virus glycoproteins in immune evasion. Curr Top Microbiol Immunol, 1992; 179: 111–120.

    CAS  PubMed  Google Scholar 

  26. Friedman HM et al. Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1 [In Process Citation]. J Immunol 2000; 165: 4528–4536 [MEDLINE record in process].

    CAS  Article  PubMed  Google Scholar 

  27. Friedman HM et al. Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol 1996; 70: 4253–4260.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hill A et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995; 375: 411–415.

    CAS  Article  PubMed  Google Scholar 

  29. Salio M, Cella M, Suter M, Lanzavecchia A . Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 1999; 29: 3245–3253.

    CAS  Article  PubMed  Google Scholar 

  30. Leib DA . Counteraction of interferon-induced antiviral responses by herpes simplex viruses. Curr Top Microbiol Immunol 2002; 269: 171–185.

    CAS  PubMed  Google Scholar 

  31. Suzutani T et al. The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection. J Gen Virol 2000; 81: 1763–1771.

    CAS  Article  PubMed  Google Scholar 

  32. Todo T et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 1999; 10: 2741–2755.

    CAS  Article  PubMed  Google Scholar 

  33. Song WC, Sarrias MR, Lambris JD . Complement and innate immunity. Immunopharmacology 2000; 49: 187–198.

    CAS  Article  PubMed  Google Scholar 

  34. Sastry K et al. Molecular characterization of the mouse mannose-binding proteins. The mannose-binding protein A but not C is an acute phase reactant. J Immunol 1991; 147: 692–697.

    CAS  PubMed  Google Scholar 

  35. Kawasaki N, Kawasaki T, Yamashina I . Isolation and characterization of a mannan-binding protein from human serum.J Biochem (Tokyo) 1983; 94: 937–947.

    CAS  Article  Google Scholar 

  36. Hansen S et al. Purification and characterization of two mannan-binding lectins from mouse serum. J Immunol 2000; 164: 2610–2618.

    CAS  Article  PubMed  Google Scholar 

  37. Haurum JS et al. Complement activation upon binding of mannan-binding protein to HIV envelope glycoproteins. Aids 1993; 7: 1307–1313.

    CAS  Article  PubMed  Google Scholar 

  38. Smiley ML, Friedman HM . Binding of complement component C3b to glycoprotein C is modulated by sialic acid on herpes simplex virus type 1-infected cells. J Virol 1985; 55: 857–861.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Friedman HM et al. Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: mapping of gC-binding sites and demonstration of conserved C3b binding in low-passage clinical isolates. J Virol 1986; 60: 470–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schellingerhout D et al. Mapping the in vivo distribution of herpes simplex virions. Hum Gene Ther 1998; 9: 1543–1549.

    CAS  Article  PubMed  Google Scholar 

  41. Schellingerhout D, Rainov NG, Breakefield XO, Weissleder R . Quantitation of HSV mass distribution in a rodent brain tumor model. Gene Therapy 2000; 7: 1648–1655.

    CAS  Article  PubMed  Google Scholar 

  42. Yoon SS et al. An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. Faseb J 2000; 14: 301–311.

    CAS  Article  PubMed  Google Scholar 

  43. Pawlik TM et al. Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a replication-competent, genetically engineered herpesvirus. Cancer Res 2000; 60: 2790–2795.

    CAS  PubMed  Google Scholar 

  44. Nakamura H et al. Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res 2001; 61: 5447–5452.

    CAS  PubMed  Google Scholar 

  45. Nakamura et al. Regulation of herpes simplex virus gamma(1)34.5 expression and oncolysis of diffuse liver metastases by Myb34.5. J Clin Invest 2002; 109: 871–882.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Pawlik TM et al. Prodrug bioactivation and oncolysis of diffuse liver metastases by a herpes simplex virus 1 mutant that expresses the CYP2B1 transgene. Cancer 2002; 95: 1171–1181.

    CAS  Article  PubMed  Google Scholar 

  47. Neuwelt EA, Pagel MA, Dix RD . Delivery of ultraviolet-inactivated 35S-herpesvirus across an osmotically modified blood-brain barrier. J Neurosurg 1991; 74: 475–479.

    CAS  Article  PubMed  Google Scholar 

  48. Nilaver G et al. Delivery of herpesvirus and adenovirus to nude rat intracerebral tumors after osmotic blood–brain barrier disruption. Proc Natl Acad Sci USA 1995; 92: 9829–9833.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Ikeda K et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999; 5: 881–887.

    CAS  Article  PubMed  Google Scholar 

  50. Wakimoto H et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol Ther 2002; 5: 275–282.

    CAS  Article  PubMed  Google Scholar 

  51. Ikeda K et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 2000; 74: 4765–4775.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Welsh RM, O’Donnell CL, Reed DJ, Rother RP . Evaluation of the Galalpha1-3Gal epitope as a host modification factor eliciting natural humoral immunity to enveloped viruses. J Virol 1998; 72: 4650–4656.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Welsh Jr RM, Cooper NR, Jensen FC, Oldstone MB . Human serum lyses RNA tumour viruses. Nature 1975; 257: 612–614.

    CAS  Article  PubMed  Google Scholar 

  54. Agrawal RS et al. Complement and anti-alpha-galactosyl natural antibody-mediated inactivation of murine retrovirus occurs in adult serum but not in umbilical cord serum. Gene Therapy 1999; 6: 146–148.

    CAS  Article  PubMed  Google Scholar 

  55. Rother RP et al. A novel mechanism of retrovirus inactivation in human serum mediated by anti-alpha-galactosyl natural antibody. J Exp Med 1995; 182: 1345–1355.

    CAS  Article  PubMed  Google Scholar 

  56. Sokoloff AV et al. Specific recognition of protein carboxy-terminal sequences by natural IgM antibodies in normal serum. Mole Ther 2001; 3: 821–830.

    CAS  Article  Google Scholar 

  57. Boes M et al. critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med 1998; 188: 2381–2386.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Boes M et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J Immunol 1998; 160: 4776–4787.

    CAS  PubMed  Google Scholar 

  59. Yokota S et al. Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage. Virology 2001; 286: 119–124.

    CAS  Article  PubMed  Google Scholar 

  60. He B, Gross M, Roizman B . The gamma(1)3.45 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 1997; 94: 843–848.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Leib DA et al. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 1999; 189: 663–672.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Zamanian-Daryoush M, Mogensen TH, DiDonato JA, Williams BR . NF-kappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-inducing kinase and IkappaB kinase. Mol Cell Biol 2000; 20: 1278–1290.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Deb A et al. RNA-dependent protein kinase PKR is required for activation of NF-kappa B by IFN-gamma in a STAT1-independent pathway. J Immunol 2001; 166: 6170–6180.

    CAS  Article  PubMed  Google Scholar 

  64. Uetani K et al. Central role of double-stranded RNA-activated protein kinase in microbial induction of nitric oxide synthase. J Immunol 2000; 165: 988–996.

    CAS  Article  PubMed  Google Scholar 

  65. Geiger KD et al. Interferon-gamma protects against herpes simplex virus type 1-mediated neuronal death. Virology 1997; 238: 189–197.

    CAS  Article  PubMed  Google Scholar 

  66. Bsibsi M, Ravid R, Gveric D, van Noort JM . Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002; 61: 1013–1021.

    CAS  Article  PubMed  Google Scholar 

  67. Lindsberg PJ et al. Complement activation in the central nervous system following blood-brain barrier damage in man. Ann Neurol 1996; 40: 587–596.

    CAS  Article  PubMed  Google Scholar 

  68. Shinoura N et al. G. RNA expression of complement regulatory proteins in human brain tumors. Cancer Lett 1994; 86: 143–149.

    CAS  Article  PubMed  Google Scholar 

  69. Maenpaa A et al. Expression of complement membrane regulators membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59) in human malignant gliomas. Am J Pathol 1996; 148: 1139–1152.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Todo T et al. Viral shedding and biodistribution of G207, a multimutated conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in aotus. Mol Ther 2000; 2: 588–595 [Record as supplied by publisher].

    CAS  Article  PubMed  Google Scholar 

  71. Miller CG, Fraser NW . Role of the immune response during neuro-attenuated herpes simplex virus-mediated tumor destruction in a murine intracranial melanoma model. Cancer Res 2000; 60: 5714–5722.

    CAS  PubMed  Google Scholar 

  72. Delman KA et al. Effects of preexisting immunity on the response to herpes simplex-based oncolytic viral therapy [In Process Citation]. Hum Gene Ther 2000; 11: 2465–2472 [MEDLINE record in process].

    CAS  Article  PubMed  Google Scholar 

  73. Chahlavi A et al. Effect of prior exposure to herpes simplex virus 1 on viral vector-mediated tumor therapy in immunocompetent mice. Gene Therapy 1999; 6: 1751–1758.

    CAS  Article  PubMed  Google Scholar 

  74. Huemer HP et al. Herpes simplex virus binds to human serum lipoprotein. Intervirology 1988; 29: 68–76.

    CAS  PubMed  Google Scholar 

  75. Srinivas RV et al. Antiviral effects of apolipoprotein A-I and its synthetic amphipathic peptide analogs. Virology 1990; 176: 48–57.

    CAS  Article  PubMed  Google Scholar 

  76. Srinivas RV et al. Inhibition of virus-induced cell fusion by apolipoprotein A-I and its amphipathic peptide analogs. J Cell Biochem 1991; 45: 224–237.

    CAS  Article  PubMed  Google Scholar 

  77. Ash RJ . Butyrate-induced reversal of herpes simplex virus restriction in neuroblastoma cells. Virology 1986; 155: 584–592.

    CAS  Article  PubMed  Google Scholar 

  78. Thormar H et al. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother 1987; 31: 27–31.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Johansson PJ, Kjellen L . Inhibition of herpes simplex virus growth caused by preparations of animal immunoglobulins is not dependent on Fc–Fc receptor interactions. Intervirology 1988; 29: 334–338.

    CAS  PubMed  Google Scholar 

  80. Goodbourn S, Didcock L, Randall RE . Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 2000; 81: 2341–2364.

    CAS  Article  PubMed  Google Scholar 

  81. Benencia F, Courreges MC . Nitric oxide and macrophage antiviral extrinsic activity. Immunology 1999; 98: 363–370.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Goldstein DJ, Weller SK, An ICP6: lacZ insertional mutagen is used to demonstrate that the UL52 gene of herpes simplex virus type 1 is required for virus growth and DNA synthesis. J Virol 1988; 62: 2970–2977.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review is dedicated to the memory of Dr Keiro Ikeda (MGH, Keio University, Japan). Funding support by the NCI to EAC, PRJ, and DK is acknowledged. Support to EAC from the Berkowitz-Knott Fund for Brain tumor Research, from the Cleveland Clinic ‘Finding a Cure for Glioblastoma’, from Accelerate Brain Cancer Cure, Inc., from the American Brain Tumor Association, and from the National Brain Tumor Foundation is also acknowledged. The authors thank Dr Tomoki Todo (MGH) for providing useful criticisms to the review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wakimoto, H., Johnson, P., Knipe, D. et al. Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther 10, 983–990 (2003). https://doi.org/10.1038/sj.gt.3302038

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302038

Further reading

Search

Quick links