Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model

Abstract

Ischemic retinal diseases, such as diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration, are a major cause of blindness worldwide. Angiostatin is an internal peptide fragment of plasminogen that inhibits endothelial proliferation in vitro and tumor growth in vivo. We now demonstrate that HIV vector encoding angiostatin (HIV-angiostatin) can inhibit retinal neovascularization in a mouse model of proliferative retinopathy. Intravitreal injections of HIV-angiostatin led to stable expression of the angiostatin gene in retinal tissue. Retinal neovascularization was histologically quantitated by a masked protocol. Retinal neovascularization in the eye injected with HIV-angiostatin was reduced in 90% (9/10; P=0.025) of animals, compared with the eye injected with phosphate-buffered saline. Reduction of histologically evident neovascular nuclei per 6-μm section averaged 68%, with maximal inhibitory effects of 87%. Neovascularization was not reduced in the eyes injected with HIV vector encoding enhanced green fluorescent protein. This is the first report that HIV-angiostatin can reduce neovascular cell nuclei in a murine proliferative retinopathy model. These data suggest that the anti-angiogenic activity of angiostatin has therapeutic potential for the treatment of retinal neovascularization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Klein R, klein B . Vision disorders in diabetes. In: National Diabetes Data Group (ed). Diabetes in America. 2nd edn., National Institutes of Health: Washington, DC, 1995; pp. 305–321.

    Google Scholar 

  2. The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol 1976; 81(4): 383–396.

  3. Early Treatment Diabetic Retinopathy Study Group. Ophthalmology 1991; 98: 741–840.

  4. O'Reilly MS et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka T, Cao Y, Folkman J, Fine HA . Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 1998; 58: 3362–3369.

    CAS  PubMed  Google Scholar 

  6. Gyorffy S, Palmer K, Gauldie J . Adenoviral vector expressing murine angiostatin inhibits a model of breast cancer metastatic growth in the lungs of mice. Am J Pathol 2001; 159: 1137–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Indraccolo S et al. Effects of angiostatin gene transfer on functional properties and in vivo growth of Kaposi's sarcoma cells. Cancer Res 2001; 61: 5441–5446.

    CAS  PubMed  Google Scholar 

  8. Mori K et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2002; 43: 1994–2000.

    PubMed  Google Scholar 

  9. Lai CC et al. Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci 2001; 42: 2401–2407.

    CAS  PubMed  Google Scholar 

  10. Bainbridge JW et al. Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Ther 2002; 9: 320–326.

    Article  CAS  PubMed  Google Scholar 

  11. Lai YK et al. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther 2002; 9: 804–813.

    Article  CAS  PubMed  Google Scholar 

  12. Mori K et al. Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am J Pathol 2001; 159: 313–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith LE et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994; 35: 101–111.

    CAS  PubMed  Google Scholar 

  14. Gao G et al. Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J Biol Chem 2002; 277: 9492–9497.

    Article  CAS  PubMed  Google Scholar 

  15. McDonald HR, Schatz H . Macular edema following panretinal photocoagulation. Retina 1985; 5: 5–10.

    Article  CAS  PubMed  Google Scholar 

  16. Lucas R et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 1998; 92: 4730–4741.

    CAS  PubMed  Google Scholar 

  17. Troyanovsky B et al. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 2001; 152: 1247–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka K et al. Inhibition of infiltration and angiogenesis by thrombospondin-1 in papillary thyroid carcinoma. Clin Cancer Res 2002; 8: 1125–1131.

    CAS  PubMed  Google Scholar 

  19. Aiello LP et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480–1487.

    Article  CAS  PubMed  Google Scholar 

  20. Lopez PF et al. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1996; 37: 855–868.

    CAS  PubMed  Google Scholar 

  21. Pierce EA et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 1995; 92: 905–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dawson DW et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999; 285: 245–248.

    Article  CAS  PubMed  Google Scholar 

  23. Tombran-Tink J, Johnson LV . Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells. Invest Ophthalmol Vis Sci 1989; 30: 1700–1707.

    CAS  PubMed  Google Scholar 

  24. Gao G et al. Unbalanced expression of VEGF and PEGF in ischemia-induced retinal neovascularization. FEBS Lett 2001; 489: 270–276.

    Article  CAS  PubMed  Google Scholar 

  25. Spranger J et al. Release of the angiogenesis inhibitor angiostatin in patients with proliferative diabetic retinopathy: association with retinal photocoagulation. Diabetologia 2000; 43: 1404–1407.

    Article  CAS  PubMed  Google Scholar 

  26. O'Reilly MS et al. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689–692.

    Article  CAS  PubMed  Google Scholar 

  27. Berger AS et al. Intravitreal sustained release corticosteroid-5-fluoruracil conjugate in the treatment of experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 1996; 37: 2318–2325.

    CAS  PubMed  Google Scholar 

  28. Yang CS et al. An intravitreal sustained-release triamcinolone and 5-fluorouracil codrug in the treatment of experimental proliferative vitreoretinopathy. Arch Ophthalmol 1998; 116: 69–77.

    Article  CAS  PubMed  Google Scholar 

  29. Li T et al. In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector. Invest Ophthalmol Vis Sci 1994; 35: 2543–2549.

    CAS  PubMed  Google Scholar 

  30. Murata T et al. Retrovirus-mediated gene transfer targeted to retinal photocoagulation sites. Diabetologia 1998; 41: 500–506.

    Article  CAS  PubMed  Google Scholar 

  31. Ferrari FK et al. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Igarashi T et al. New strategy for in vivo transgene expression in corneal epithelial progenitor cells, submitted for publication. Current Eye Research 2002; 24: 46–50.

    Article  PubMed  Google Scholar 

  33. Shimada T et al. Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector. J Clin Invest 1991; 88: 1043–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Emi N, Friedmann T, Yee JK . Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol 1991; 65: 1202–1207.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Uchida N et al. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc Natl Acad Sci USA 1998; 95: 11 939–11 944.

    Article  Google Scholar 

  36. Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  PubMed  Google Scholar 

  37. Miyoshi H et al. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 1997; 94: 10 319–10 323.

    Article  Google Scholar 

  38. Takahashi M et al. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 1999; 73: 7812–7816.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao Y . Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol 2001; 33: 357–369.

    Article  CAS  PubMed  Google Scholar 

  40. Orimo H et al. Association between single nucleotide polymorphisms in the hMSH3 gene and sporadic colon cancer with microsatellite instability. J Hum Genet 2000; 45: 228–230.

    Article  CAS  PubMed  Google Scholar 

  41. Miyoshi H et al. Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  43. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  44. Miyake K et al. Selective killing of human immunodeficiency virus-infected cells by targeted gene transfer and inducible gene expression using a recombinant human immunodeficiency virus vector. Hum Gene Ther 2001; 12: 227–233.

    Article  CAS  PubMed  Google Scholar 

  45. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual. Cold spring Harbor Laboratory Press: Cold Spring Harbor NY, 1989, pp. 1860–1875.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igarashi, T., Miyake, K., Kato, K. et al. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model. Gene Ther 10, 219–226 (2003). https://doi.org/10.1038/sj.gt.3301878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301878

Keywords

This article is cited by

Search

Quick links