Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Novel antisense oligonucleotides targeting TGF-β inhibit in vivo scarring and improve surgical outcome

Abstract

The scarring response is an important factor in many diseases throughout the body. In addition, it is a major problem in influencing results of surgery. In the eye, for example, post-operative scarring can determine the outcome of surgery. This is particularly the case in the blinding disease glaucoma, where several anti-scarring regimens are currently used to improve glaucoma surgery results, but are of limited use clinically because of severe complications. We have recently identified transforming growth factor-β (TGF-β) as a target for post-operative anti-scarring therapy in glaucoma, and now report the first study of novel second-generation antisense phosphorothioate oligonucleotides against TGF-β in vivo. Single applications of a TGF-β OGN at the time of surgery in two different animal models closely related to the surgical procedure performed in glaucoma patients, significantly reduced post-operative scarring (P<0.05) and improved surgical outcome. Our findings suggest that TGF-β antisense oligonucleotides have potential as a new therapy for reducing post-surgical scarring. Its long-lasting effects after only a single administration at the time of surgery make it particularly attractive clinically. Furthermore, although we have shown this agent to be useful in the eye, it could have widespread applications anywhere in the body where the wound-healing response requires modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Thylefors B, Negrel A . The global impact of glaucoma. Bulletin World Health Org 1994; 72: 323–326.

    CAS  Google Scholar 

  2. Foster A, Johnson GJ . Magnitude and causes of blindness in the developing world. Int Ophthalmol 1990; 14: 135–140.

    Article  CAS  PubMed  Google Scholar 

  3. Quigley HA . Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80: 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sommer A . Glaucoma: facts and figures (Doyne lecture). Eye 1996; 10: 295–301.

    Article  PubMed  Google Scholar 

  5. Jay JL . Rational choice of therapy in primary open angle glaucoma. Eye 1992; 6: 243–247.

    Article  PubMed  Google Scholar 

  6. Migdal C, Gregory W, Hitchings RA . Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology 1994; 101: 1651–1656.

    Article  CAS  PubMed  Google Scholar 

  7. The AGIS Investigators. The advanced glaucoma intervention study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000; 130: 490–491.

  8. Addicks EM, Quigley HA, Green WR, Robin AL . Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol 1983; 101: 795–798.

    Article  CAS  PubMed  Google Scholar 

  9. Hitchings RA, Grierson I . Clinico pathological correlation in eyes with failed fistulizing surgery. Trans Ophthalmol Soc UK 1983; 103: 84–88.

    PubMed  Google Scholar 

  10. Stamper RL, McMenemy MG, Lieberman MF . Hypotonous maculopathy after trabeculectomy with subconjunctival 5-fluorouracil. Am J Ophthalmol 1992; 114: 544–553.

    Article  CAS  PubMed  Google Scholar 

  11. Parrish R, Minckler D . Late endophthalmitis – filtering surgery time bomb? Ophthalmology 1996; 103: 1167–1168.

    Article  CAS  PubMed  Google Scholar 

  12. Jampel HD, Pasquale LR, Dibernardo C . Hypotony maculopathy following trabeculectomy with mitomycin C. Arch Ophthalmol 1992; 110: 1049–1150.

    Article  CAS  PubMed  Google Scholar 

  13. Ashcroft GS et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med 1997; 3: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  14. Shah M, Foreman DM, Ferguson MW . Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108: 985–1002.

    CAS  PubMed  Google Scholar 

  15. Levine JH, Moses HL, Gold LI, Nanney LB . Spatial and temporal patterns of immunoreactive transforming growth factor-beta-1, -beta-2 and -beta-3 during excisional wound repair. Am J Pathol 1993; 143: 368–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Merwin JR et al. Vascular cell responses to TGF-β3 mimic those of TGF-β1 in vitro. Growth Factors 1991; 5: 149–158.

    Article  CAS  PubMed  Google Scholar 

  17. Lutty GA et al. Heterogeneity in localization of isoforms of TGF-beta in human retina, vitreous and choroid. Invest Ophthalmol Vis Sci 1993; 34: 477–487.

    CAS  PubMed  Google Scholar 

  18. Pasquale LR et al. Immunolocalisation of TGF-beta1, TGF-beta2 and TGF-beta3 in the anterior segment of the human eye. Invest Ophthalmol Vis Sci 1993; 34: 23–30.

    CAS  PubMed  Google Scholar 

  19. Imanishi J et al. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 2000; 19: 113–129.

    Article  CAS  PubMed  Google Scholar 

  20. Connor TB et al. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J Clin Invest 1989; 83: 1661–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kon CH, Occleston NL, Aylward GW, Khaw PT . Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci 1999; 40: 705–712.

    CAS  PubMed  Google Scholar 

  22. Carrington L, McLeod D, Boulton M . IL-10 and antibodies to TGF-beta2 and PDGF inhibit RPE-mediated retinal contraction. Invest Ophthalmol Vis Sci 2000; 41: 1210–1216.

    CAS  PubMed  Google Scholar 

  23. Lee EH et al. Overexpression of the transforming growth factor-beta-inducible gene betaig-h3 in anterior polar cataracts. Invest Ophthalmol Vis Sci 2000; 41: 1840–1805.

    CAS  PubMed  Google Scholar 

  24. Nishi O, Nishi K, Wada K, Ohmoto Y . Expression of transforming growth factor (TGF)-alpha, TGF-beta(2) and interleukin 8 messenger RNA in postsurgical and cultured lens epithelial cells obtained from patients with senile cataracts. Graefes Arch Clin Exp Ophthalmol 1999; 237: 806–811.

    Article  CAS  PubMed  Google Scholar 

  25. Saika S et al. Immunolocalization of TGF-beta1, -beta2, and -beta3, and TGF-beta receptors in human lens capsules with lens implants. Graefes Arch Clin Exp Ophthalmol 2000; 238: 283–293.

    CAS  PubMed  Google Scholar 

  26. Cordeiro MF, Gay JA, Khaw PT . Human anti-TGF-β2 monoclonal antibody: a new anti-scarring agent for glaucoma filtration surgery. Invest Ophthalmol Vis Sci 1999; 40: 2225–2234.

    CAS  PubMed  Google Scholar 

  27. Cordeiro MF et al. TGF-β1, -β2 & -β3 in vivo: effects on normal and Mitomycin-C modulated conjunctival scarring. Invest Ophthalmol Vis Sci 1999; 40: 1975–1982.

    CAS  PubMed  Google Scholar 

  28. Cordeiro MF, Bhattacharya SS, Schultz GS, Khaw PT . TGF-β1, -β2 & -β3 in vitro: biphasic effects on Tenon's fibroblast contraction, proliferation & migration. Invest Ophthalmol Vis Sci 2000; 41: 756–763.

    CAS  PubMed  Google Scholar 

  29. Siriwardena D et al. Human anti-transforming growth factor beta-2 monoclonal antibody – a new modulator of wound healing in trabeculectomy: a randomised placebo controlled clinical study. Ophthalmology 2002; 109: 427–431.

    Article  PubMed  Google Scholar 

  30. Tamm I, Dorken B, Hartmann G . Antisense therapy in oncology: new hope for an old idea? Lancet 2001; 358: 489–497.

    Article  CAS  PubMed  Google Scholar 

  31. Orr RM . Technology evaluation: fomivirsen, Isis Pharmaceuticals Inc/CIBA vision. Curr Opin Mol Ther 2001; 3: 288–294.

    CAS  PubMed  Google Scholar 

  32. Lang KA, Peppercorn MA . Promising new agents for the treatment of inflammatory bowel disorders. Drugs R D 1999; 1: 237–244.

    Article  CAS  PubMed  Google Scholar 

  33. Yacyshyn BR et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn's disease. Gastroenterology 1998; 114: 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  34. Crooke ST . Basic principles of antisense technology. In: Crooke ST (ed). Antisense Drug Technology: Principles, Strategies and Applications. Marcel Dekker: New York, 2001, pp 1–28.

    Chapter  Google Scholar 

  35. Stephenson ML, Zamecnik PC . Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 1978; 75: 285–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dean NM, Butler M, Monia BP, Manoharan M . Pharmacology of 2′-O-(2-methoxy) ethyl-modified antisense oligonucleotides. In: Crooke ST (ed). Antisense Drug Technology: Principles, Strategies and Applications. Marcel Dekker: New York, 2001, pp 319–338.

    Google Scholar 

  37. Dean NM, Griffey RH . Identification and charecterization of second-generation antisense oligonucleotides. Antisense Nucleic Acid Drug Develop 1997; 7: 229–233.

    Article  CAS  Google Scholar 

  38. Reichel MB et al. New model of conjunctival scarring in the mouse eye. Br J Ophthalmol 1998; 82: 1072–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cordeiro MF et al. Role of TGF-β in conjunctival scarring. Clin Sci 2002 (in press).

  40. Cordeiro MF et al. The effect of varying mitomycin-c treatment area in glaucoma filtration surgery in the rabbit. Invest Ophthalmol Vis Sci 1997; 38: 1639–1646.

    CAS  PubMed  Google Scholar 

  41. Reichel ML et al. A new model of conjunctival scarring in the mouse eye. Invest Ophthalm Vis Sci 1996; 37: 91.

    Google Scholar 

  42. Flanders KC, Holder MG, Winokur TS . Autoinduction of mRNA and protein expression for transforming growth factor-beta S in cultured cardiac cells. J Mol Cell Cardiol 1995; 27: 805–812.

    Article  CAS  PubMed  Google Scholar 

  43. Cordeiro MF . Beyond Mitomycin – TGF-β and wound healing. Prog Ret Eye Res 2002; 21: 75–89.

    Article  CAS  Google Scholar 

  44. Jampel HD, Roche N, Stark WJ, Roberts AB . Transforming growth factor-beta in human aqueous humor. Curr Eye Res 1990; 9: 963–969.

    Article  CAS  PubMed  Google Scholar 

  45. Tripathi RC, Li J, Chan WF, Tripathi BJ . Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res 1994; 59: 723–727.

    Article  CAS  PubMed  Google Scholar 

  46. Picht G, Welge-Luessen U, Grehn F, Lutjen-Drecoll E . Transforming growth factor beta 2 levels in the aqueous humor in different types of glaucoma and the relation to filtering bleb development. Graefes Arch Clin Exp Ophthalmol 2001; 239: 199–207.

    Article  CAS  PubMed  Google Scholar 

  47. Knisely TL, Bleicher PA, Vibbard CA, Granstein RD . Production of latent transforming growth factor-beta and other inhibitory factors by cultured murine iris and ciliary body cells. Curr Eye Res 1991; 10: 761–771.

    Article  CAS  PubMed  Google Scholar 

  48. Tripathi RC, Chan WF, Li J, Tripathi BJ . Trabecular cells express the TGF-beta 2 gene and secrete the cytokine. Exp Eye Res 1994; 58: 523–538.

    Article  CAS  PubMed  Google Scholar 

  49. Massague J, Chen YG . Controlling TGF-beta signaling. Genes Dev 2000; 14: 627–644.

    CAS  PubMed  Google Scholar 

  50. Lee SB et al. Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 2000; 20: 325–334.

    Article  CAS  PubMed  Google Scholar 

  51. Obata H, Kaburaki T, Kato M, Yamashita H . Expression of TGF-beta type I and type II receptors in rat eyes. Curr Eye Res 1996; 15: 335–340.

    Article  CAS  PubMed  Google Scholar 

  52. Wrana JL et al. Mechanism of activation of the TGF-beta receptor. Nature 1994; 370: 341–347.

    Article  CAS  PubMed  Google Scholar 

  53. Nakao A et al. TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 1997; 16: 5353–5362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Piek E, Heldin CH, Ten Dijke P . Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J 1999; 13: 2105–2124.

    Article  CAS  PubMed  Google Scholar 

  55. Rotzer D et al. Type III TGF-beta receptor-independent signalling of TGF-beta2 via TbetaRII-B, an alternatively spliced TGF-beta type II receptor. EMBO J 2001; 20: 480–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. The Fluorouracil Filtering Surgery Study Group. Fluorouracil Filtering Surgery Study one-year follow-up. Am J Ophthalmol 1989; 108: 625–635.

  57. Kitazawa Y, Kawase K, Matsushita H, Minobe M . Trabeculectomy with mitomycin: a comparative study with fluorouracil. Arch Ophthalmol 1991; 109: 1693–1698.

    Article  CAS  PubMed  Google Scholar 

  58. Katz GJ et al. Mitomycin C versus 5-fluorouracil in high-risk glaucoma filtering surgery. Extended follow-up. Ophthalmology 1995; 102: 1263–1269.

    Article  CAS  PubMed  Google Scholar 

  59. Lamping KA, Belkin JK . F5-Fluorouracil and mitomycin C in pseudophakic patients. Ophthalmology 1995; 102: 70–75.

    Article  CAS  PubMed  Google Scholar 

  60. Belyea DA et al. Late onset of sequential multifocal bleb leaks after glaucoma filtration surgery with 5-fluorauracil and mitomycin-C. Am J Ophthalmol 1997; 124: 40–45.

    Article  CAS  PubMed  Google Scholar 

  61. Greenfield DS, Liebmann JM, Jee J, Ritch R . Late-onset bleb leaks after glaucoma filtering surgery. Arch Ophthalmol 1998; 116: 443–447.

    Article  CAS  PubMed  Google Scholar 

  62. Kupin TH et al. Adjunctive mitomycin C in primary trabeculectomy in phakic eyes. Am J Ophthalmol 1995; 119: 30–39.

    Article  PubMed  Google Scholar 

  63. Crowston JG et al. Antimetabolites-induced apoptosis in Tenon's capsule fibroblasts. Invest Ophthalmol Vis Sci 1998; 39: 449–454.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordeiro, M., Mead, A., Ali, R. et al. Novel antisense oligonucleotides targeting TGF-β inhibit in vivo scarring and improve surgical outcome. Gene Ther 10, 59–71 (2003). https://doi.org/10.1038/sj.gt.3301865

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301865

Keywords

This article is cited by

Search

Quick links