Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Non-invasive gamma camera imaging of gene transfer using an adenoviral vector encoding an epitope-tagged receptor as a reporter

Abstract

A model epitope-tagged receptor was constructed by fusing the hemagglutinin (HA) sequence on the extracellular N-terminus of the human somatostatin receptor subtype 2 (hSSTr2) gene. This construct was placed in an adenoviral (Ad-HAhSSTr2) vector. This study evaluated Ad-HAhSSTr2 in vitro and in vivo using FACS, fluorescent microscopy, radioactive binding assays, and gamma camera imaging techniques. Infection of A-427 non-small cell lung cancer cells with Ad-HAhSSTr2 or Ad-hSSTr2 resulted in similar expression of hSSTr2 by FACS analysis and binding assays using a 99mTc-labeled somatostatin analogue (99mTc-P2045). HAhSSTr2 expression in A-427 cells was specific for infection with Ad-HAhSSTr2. FITC-labeled anti-HA antibody (FITC-HA) confirmed surface expression in live A-427 cells and the absence of internalization. Gamma camera imaging and gamma counter analysis of normal mice showed significantly greater (P<0.05) liver uptake of 99mTc-labeled anti-HA antibody (99mTc-anti-HA) in mice injected i.v. 48 h earlier with Ad-HAhSSTr2 (53.6±6.9% ID/g) as compared to mice similarly injected with Ad-hSSTr2 (9.0±1.3% ID/g). In a mouse tumor model, imaging detected increased tumor localization of 99mTc-anti-HA due to direct intratumor injection Ad-HAhSSTr2. Gamma counter analysis confirmed significantly greater (P<0.05) uptake of 99mTc-anti-HA in tumors injected with Ad-HAhSSTr2 (12.5±4.1% ID/g) as compared to Ad-hSSTr2-infected tumors (5.1±1.5% ID/g). These studies demonstrate the feasibility of using an epitope-tagged reporter receptor for non-invasively imaging gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Human gene marker/therapy clinical protocols (complete updated listings). Hum Gene Ther 1999; 10: 3067–3123.

  2. Contag CH, Jenkins D, Contag PR, Negrin RS . Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000; 2: 41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lipshutz GS et al. In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 2001; 3: 284–292.

    Article  CAS  PubMed  Google Scholar 

  4. Yang M et al. Visualizing gene expression by whole-body fluorescence imaging. Proc Natl Acad Sci USA 2000; 97: 12 278–12 282.

    Article  Google Scholar 

  5. Pfeifer A et al. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol Ther 2001; 3: 319–322.

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhuri TR et al. Light-based imaging of green fluorescent protein-positive ovarian cancer xenografts during therapy. Gynecol Oncol 2001; 82: 581–589.

    Article  CAS  PubMed  Google Scholar 

  7. Chaudhuri TR et al. A noninvasive reporter system to image adenoviral-mediated gene transfer to ovarian cancer xenografts. Gynecologic Oncol 2001; 83: 432–438.

    Article  CAS  Google Scholar 

  8. Weissleder R et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000; 6: 351–355.

    Article  CAS  PubMed  Google Scholar 

  9. Louie AY et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000; 18: 321–325.

    Article  CAS  PubMed  Google Scholar 

  10. Stegman LD et al. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci USA 1999; 96: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walter G, Barton ER, Sweeney HL . Noninvasive measurement of gene expression in skeletal muscle. Proc Natl Acad Sci USA 2000; 97: 5151–5155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Auricchio A, Zhou R, Wilson JM, Glickson JD . In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc Natl Acad Sci USA 2001; 98: 5205–5210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gambhir SS et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998; 39: 2003–2011.

    CAS  PubMed  Google Scholar 

  14. Tjuvajev JG et al. A general approach to the non-invasive imaging of transgenes using cis- linked herpes simplex virus thymidine kinase. Neoplasia 1999; 1: 315–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tjuvajev JG et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res 1999; 59: 5186–5193.

    CAS  PubMed  Google Scholar 

  16. Hospers GA et al. Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography. Cancer Res 2000; 60: 1488–1491.

    CAS  PubMed  Google Scholar 

  17. Gambhir SS et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 2000; 97: 2785–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gambhir SS, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000; 2: 118–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iyer M et al. 8-18Ffluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med 2001; 42: 96–105.

    CAS  PubMed  Google Scholar 

  20. Hustinx R et al. Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography and[18F]FHPG. Eur J Nucl Med 2001; 28: 5–12.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobs A et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 2001; 61: 2983–2995.

    CAS  PubMed  Google Scholar 

  22. MacLaren DC et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999; 6: 785–791.

    Article  CAS  PubMed  Google Scholar 

  23. Liang Q et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001; 8: 1490–1498.

    Article  CAS  PubMed  Google Scholar 

  24. Zinn KR et al. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high affinity peptide radiolabeled with 99mTc or 188Re. J Nucl Med 2000; 41: 887–895.

    CAS  PubMed  Google Scholar 

  25. Rogers BE, Zinn KR, Buchsbaum DJ . Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q J Nucl Med 2000; 44: 208–223.

    CAS  PubMed  Google Scholar 

  26. Zinn KR et al. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice. Radiology 2002; 223: 417–425.

    Article  CAS  PubMed  Google Scholar 

  27. Yu Y et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 2000; 6: 933–937.

    Article  CAS  PubMed  Google Scholar 

  28. Boland A et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000; 60: 3484–3492.

    CAS  PubMed  Google Scholar 

  29. Raben D et al. Enhancement of radiolabeled antibody binding and tumor localization through adenoviral transduction of the human carcinoembryonic antigen gene. Gene Ther 1996; 3: 567–580.

    CAS  PubMed  Google Scholar 

  30. Zinn KR et al. Simultaneous evaluation of dual gene transfer to adherent cells by gamma-ray imaging. Nucl Med Biol 2001; 28: 135–144.

    Article  CAS  PubMed  Google Scholar 

  31. Koller KJ et al. A genetic method for the production of cell lines expressing high levels of 7-transmembrane receptors. Anal Biochem 1997; 250: 51–60.

    Article  CAS  PubMed  Google Scholar 

  32. Kundra V, Mannting F, Jones AG, Kassis AI . Noninvasive monitoring of somatostatin receptor subtype 2 chimeric gene transfer. J Nucl Med 2002; 43: 406–412.

    CAS  PubMed  Google Scholar 

  33. Zinn KR et al. Detection and measurement of in vitro gene transfer by gamma camera imaging. Gene Ther 2001; 8: 291–299.

    Article  CAS  PubMed  Google Scholar 

  34. Andersson P et al. Internalization of indium-111 into human neuroendocrine tumor cells after incubation with indium-111-DTPA-D-Phe1-octreotide. J Nucl Med 1996; 37: 2002–2006.

    CAS  PubMed  Google Scholar 

  35. de Jong M et al. Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res 1998; 58: 437–441.

    CAS  PubMed  Google Scholar 

  36. van der Eb MM et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther 1998; 5: 451–458.

    Article  CAS  PubMed  Google Scholar 

  37. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 2001; 8: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  38. Zinn KR et al. Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5). Gene Ther 1998; 5: 798–808.

    Article  CAS  PubMed  Google Scholar 

  39. Haunschild J, Haro HP, Pack P, Pluckthun A . Pharacokinetic properties of bivalent miniantibodies and comparison to other immunoglobulin forms. Antib Immunoconjugates Radiopharm 1995; 8: 111–128.

    CAS  Google Scholar 

  40. Slavin-Chiorini DC et al. A CDR-grafted (humanized) domain-deleted antitumor antibody. Cancer Biother Radiopharm 1997; 12: 305–316.

    Article  CAS  PubMed  Google Scholar 

  41. Wu AM et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci USA 2000; 97: 8495–8500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bousquet C et al. Antiproliferative effect of somatostatin and analogs. Chemotherapy 2001; 47: 30–39.

    Article  CAS  PubMed  Google Scholar 

  43. Ferjoux G et al. Signal transduction of somatostatin receptors negatively controlling cell proliferation. J Physiol Paris 2000; 94: 205–210.

    Article  CAS  PubMed  Google Scholar 

  44. Rochaix P et al. Gene therapy for pancreatic carcinoma: local and distant antitumor effects after somatostatin receptor sst2 gene transfer. Hum Gene Ther 1999; 10: 995–1008.

    Article  CAS  PubMed  Google Scholar 

  45. Fitzpatrick VD, Vandlen RL . Agonist selectivity determinants in somatostatin receptor subtypes I and II. J Biol Chem 1994; 269: 24 621–24 626.

    Google Scholar 

  46. Kaupmann K et al. Two amino acids, located in transmembrane domains VI and VII, determine the selectivity of the peptide agonist SMS 201-995 for the SSTR2 somatostatin receptor. EMBO J 1995; 14: 727–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liapakis G et al. Identification of ligand binding determinants in the somatostatin receptor subtypes 1 and 2. J Biol Chem 1996; 271: 20 331–20 339.

    Article  Google Scholar 

  48. Strnad J, Hadcock JR . Identification of a critical aspartate residue in transmembrane domain three necessary for the binding of somatostatin to the somatostatin receptor SSTR2. Biochem Biophys Res Commun 1995; 3: 913–921.

    Article  Google Scholar 

  49. Nehring RB, Meyerhof W, Richter D . Aspartic acid residue 124 in the third transmembrane domain of the somatostain receptor subtype 3 is essential for somatostatin-14 binding. DNA Cell Biol 1995; 14: 939–944.

    Article  CAS  PubMed  Google Scholar 

  50. Roth A et al. Endocytosis of the rat sinatistin receptors: subtype discrimination, ligand specificity, and delineation of carboxy-terminal positive and negative sequence motifs. DNA Cell Biol 1997; 16: 111–119.

    Article  CAS  PubMed  Google Scholar 

  51. Koenig JA et al. Fates of endocytosed somatostatin sst2 receptors and associated agonists. Biochem J 1998; 336: 291–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bogadanov JA, Petherick P, Marecos E, Weissleder R . In vivo localization of diglycylcysteine-bearing synthetic peptides by nuclear imaging of oxotechnetate transchelation. Nucl Med Biol 1997; 24: 739–742.

    Article  Google Scholar 

  53. He T et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rogers BE et al. In vivo localization of 111In-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 1999; 5: 383–393.

    CAS  PubMed  Google Scholar 

  55. Zinn KR et al. Imaging Tc-99m-labeled FGF-1 targeting in rats. Nucl Med Biol 2000; 27: 407–414.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grant CA80104 and grants from the Avon Products Foundation and the American Heart Association. The authors appreciate the generous supply of P2045 from Diatide Research Laboratories (Londonberry, NH, USA). The authors thank Sheila Bright, Ashley Davis, Charlotte Hammond, Synethia Kidd, Richard Kirkman, Gloria Robinson, and Leisa Seay for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, B., Chaudhuri, T., Reynolds, P. et al. Non-invasive gamma camera imaging of gene transfer using an adenoviral vector encoding an epitope-tagged receptor as a reporter. Gene Ther 10, 105–114 (2003). https://doi.org/10.1038/sj.gt.3301853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301853

Keywords

This article is cited by

Search

Quick links