Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adeno-associated virus vector-mediated gene transfer into dystrophin-deficient skeletal muscles evokes enhanced immune response against the transgene product

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscular disorder caused by a defect in the DMD gene. AAV vector-mediated micro-dystrophin cDNA transfer is an attractive approach to treatment of DMD. To establish effective gene transfer into skeletal muscle, we examined the transduction efficiency of an AAV vector in skeletal muscles of dystrophin-deficient mdx mice. When an AAV vector encoding the LacZ gene driven by a CMV promoter (AAV-CMVLacZ) was introduced, β-galactosidase expression markedly decreased in mdx muscle 4 weeks after injection due to immune responses against the transgene product. We also injected AAV-CMVLacZ into skeletal muscles of mini-dystrophin-transgenic mdx mice (CVBA3’), which show ameliorated phenotypes without overt signs of muscle degeneration. AAV vector administration, however, evoked substantial immune responses in CVBA3’ muscle. Importantly, AAV vector using muscle-specific MCK promoter also elicited responses in mdx muscle, but at a considerably later period. These results suggested that neo-antigens introduced by AAV vectors could evoke immune reactions in mdx muscle, since increased permeability allowed a leakage of neo-antigens from the dystrophin-deficient sarcolemma of muscle fibers. However, resident antigen-presenting cells, such as myoblasts, myotubes and regenerating immature myofibers, might also play a role in the immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Emery AEH . Duchenne Muscular Dystrophy 2nd edn Oxford University Press 1993

    Google Scholar 

  2. Rogot T et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice Nature 1993 361: 647–650

    Article  Google Scholar 

  3. Acsadi G et al. Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer Hum Gene Ther 1996 7: 129–140

    Article  CAS  PubMed  Google Scholar 

  4. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase Proc Natl Acad Sci USA 1996 93: 5731–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tuner G, Duncley MG, Dickson G . Gene therapy of Duchenne muscular dystrophy Brown SC, Lucy JA (eds); Dystrophin: Gene, Protein and Cell Biology Cambridge University Press 1997 pp 274–309

  6. Chen H-H et al. DNA from both high-capacity and first generation adenoviral vectors remains intact in skeletal muscle Hum Gene Ther 1999 10: 365–373

    Article  PubMed  Google Scholar 

  7. Acsadi G et al. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs Nature 1991 352: 815–818

    Article  CAS  PubMed  Google Scholar 

  8. Gussoni E, Blau HM, Kunkel LM . The fate of individual myoblasts after transplantation into muscles of DMD patients Nature Med 1997 3: 970–977

    Article  CAS  PubMed  Google Scholar 

  9. Gussoni E et al. Dystrophin expression in mdx mouse restored by stem cell transplantation Nature 1999 40: 390–394

    Google Scholar 

  10. Rando TA, Disatnik MH, Zhou LZ . Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides Proc Natl Acad Sci USA 2000 97: 5363–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bartlett RJ et al. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide Nat Biotechnol 2000 18: 615–622

    Article  CAS  PubMed  Google Scholar 

  12. Dunckley MG et al. Modification of splicing in dystrophin gene in cultured Mdx muscle cells by antisense oligonucleotides Hum Mol Genet 1998 7: 1083–1090

    Article  CAS  PubMed  Google Scholar 

  13. Barton-Davis ER et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice J Clin Invest 1999 104: 375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wagner KR et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations Ann Neurol 2001 49: 706–711

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto K et al. Immune response to adenovirus-delivered antigens upregulates utrophin and results in mitigation of muscle pathology in mdx mice Hum Gene Ther 2000 11: 669–680

    Article  CAS  PubMed  Google Scholar 

  16. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector J Virol 1996 70: 8098–8108

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kessler PD et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein Proc Natl Acad Sci USA 1996 93: 14082–14087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fisher KJ et al. Recombinant adeno-associated virus for muscle directed gene therapy Nat Med 1997 3: 306–312

    Article  CAS  PubMed  Google Scholar 

  19. Kaplitt MG et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in mammalian brain Nat Genet 1994 8: 148–153

    Article  CAS  PubMed  Google Scholar 

  20. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle cells J Virol 1998 72: 4212–4223

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Greelish JP et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector Nat Med 1999 5: 439–443

    Article  CAS  PubMed  Google Scholar 

  22. Li J et al. rAAV vector-mediated sarcoglycan gene transfer in a hamster model for limb girdle muscular dystrophy Gene Therapy 1999 6: 74–82

    Article  CAS  PubMed  Google Scholar 

  23. Cordier L et al. Rescue of skeletal muscles of γ-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer Mol Ther 2000 1: 119–129

    Article  CAS  PubMed  Google Scholar 

  24. Cordier L et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies Hum Gene Ther 2001 12: 205–215

    Article  CAS  PubMed  Google Scholar 

  25. England SB et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin Nature 1990 343: 180–182

    Article  CAS  PubMed  Google Scholar 

  26. Phelps SF et al. Expression of full-length and truncated dystrophin mini-gene in transgenic mdx mice Hum Gene Ther 1995 4: 1251–1258

    CAS  Google Scholar 

  27. Yuasa K et al. Effective restoration of dystrophin-associated proteins in vivo by adenovirus-mediated transfer of truncated dystrophin cDNAs FEBS Lett 1998 425: 329–336

    Article  CAS  PubMed  Google Scholar 

  28. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model Proc Natl Acad Sci USA 2000 97: 13714–13719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Straub V, Rafael JA, Chamberlain JS, Campbell KP . Animal models for muscular dystrophy show different patterns of sarcolemmal disruption J Cell Biol 1997 139: 375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Chirmule N, Gao G-P, Wilson J . CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells J Virol 2000 74: 8003–8010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Witmer-Pack MD et al. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145 Cell Immunol 1995 163: 157–162

    Article  CAS  PubMed  Google Scholar 

  32. Khan MA . Corticosteroid therapy in Duchenne muscular dystrophy J Neurol Sci 1993 120: 8–14

    Article  CAS  PubMed  Google Scholar 

  33. Pimorady-Esfahani A, Grounds MD, McMenamin PG . Macrophages and dendritic cells in normal and regenerating murine skeletal muscle Muscle Nerve 1997 20: 158–166

    Article  CAS  PubMed  Google Scholar 

  34. Hartigan-O'Connor D et al. Immune evasion by muscle-specific gene expression in dystrophic muscle Mol Ther 2001 4: 525–533

    Article  CAS  PubMed  Google Scholar 

  35. Hohlfeld R, Engel AG . The immunobiology of muscle Immunol Today 1994 15: 269–274

    Article  CAS  PubMed  Google Scholar 

  36. Tinsley JM et al. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene Nature 1996 28: 349–353

    Article  Google Scholar 

  37. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus J Virol 1998 72: 2224–2232

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shield MA et al. E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice Mol Cell Biol 1996 16: 5058–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Snyder R, Xiao X, Samulski RJ . Production of recombinant adeno-associated viral vectors Dracopoli N (eds); Current Protocols in Human Genetics John Wiley 1996 pp 1–2

  40. Ishii A et al. Effective adenovirus-mediated gene expression in adult murine skeletal muscle Muscle Nerve 1999 22: 592–599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr M Yoshida for providing mdx mice. We also thank colleagues in our laboratory for useful discussion and suggestions on this work. This work is supported by Grants-in-Aid for Scientific Research for Center of Excellence, Research on Nervous and Mental Disorders (10B-1, 13B-1) Health Sciences Research Grants for Research on the Human Genome and Gene Therapy (H10-genome-015, H13-genome-001), for Research on Brain Science (H12-Brain-028) from the Ministry of Heath, Labor and Welfare, Grant-in-Aids for Scientific Research (10557065, 11470153, 11170264 and 14657158) from the Ministry of Education, Culture, Sports, Science and Technology, and a Research Grant from Human Frontier Science Project.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuasa, K., Sakamoto, M., Miyagoe-Suzuki, Y. et al. Adeno-associated virus vector-mediated gene transfer into dystrophin-deficient skeletal muscles evokes enhanced immune response against the transgene product. Gene Ther 9, 1576–1588 (2002). https://doi.org/10.1038/sj.gt.3301829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301829

Keywords

This article is cited by

Search

Quick links