Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Myeloablation enhances engraftment of transduced murine hematopoietic cells, but does not influence long-term expression of the transgene

Abstract

To investigate to what extent myeloablation, graft size, and ex vivo manipulation influence the engraftment and long-term survival of transduced murine hematopoietic cells, groups of C57BL/6J (CD45.2) mice receiving total body irradiation (TBI) (1–9 Gy) or no irradiation were transplanted with either transduced bone marrow (BM) cells, at two cell doses, or with fresh BM cells from B6/SJL (CD45.1) congenic mice. Short (40 days) and long-term (5 months) engraftment and transgene expression were measured by FACS analysis. No donor cells were detected in the hematopoietic tissues of non-myeloablated mice, whereas in the irradiated animals, levels of engraftment correlated well with the dose of TBI administered. Similar percentages of transgene-expressing cells were found in the grafted hematopoietic cells of all groups of mice, regardless of the dose of TBI administered or the level of engraftment achieved. This suggests that the engrafted animals could become tolerant to the transgene product (enhanced green fluorescent protein, EGFP). Our results indicate that TBI facilitates the engraftment of manipulated hematopoietic cells in a dose-dependent manner, that mice engrafted with EGFP+ hematopoietic cells probably acquire tolerance to EGFP, and that increasing the graft size and reducing the ex vivo manipulation required for retroviral gene transfer of hematopoietic cells also enhances their engrafting potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kiem HP et al. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor Blood 1998 92: 1878–1886

    CAS  PubMed  Google Scholar 

  2. Schilz AJ et al. High efficiency gene transfer to human hematopoietic SCID-repopulating cells under serum-free conditions Blood 1998 92: 3163–3171

    CAS  PubMed  Google Scholar 

  3. Conneally E, Eaves CJ, Humphries RK . Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential Blood 1998 91: 3487–3493

    CAS  PubMed  Google Scholar 

  4. van Hennik PB et al. Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeficient mice Blood 1998 92: 4013–4022

    CAS  PubMed  Google Scholar 

  5. Barquinero J et al. Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice Blood 2000 95: 3085–3093

    CAS  PubMed  Google Scholar 

  6. Van Beusechem VW, Valerio D . Gene transfer into hematopoietic stem cells of nonhuman primates Hum Gene Ther 1996 7: 1649–1668

    Article  CAS  PubMed  Google Scholar 

  7. Simonaro CM et al. Autologous transplantation of retrovirally transduced bone marrow or neonatal blood cells into cats can lead to long-term engraftment in the absence of myeloablation Gene Therapy 1999 6: 107–113

    Article  CAS  PubMed  Google Scholar 

  8. Slavin S, Strober S, Fuks Z, Kaplan HS . Long-term survival of skin allografts in mice treated with fractionated total lymphoid irradiation Science 1976 193: 1252–1254

    Article  CAS  PubMed  Google Scholar 

  9. Slavin S, Strober S, Fuks Z, Kaplan HS . Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long-term survival of allogeneic bone marrow and skin grafts J Exp Med 1977 146: 34–48

    Article  CAS  PubMed  Google Scholar 

  10. Durham MM et al. Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning J Immunol 2000 165: 1–4

    Article  CAS  PubMed  Google Scholar 

  11. Naparstek E et al. Engraftment of marrow allografts treated with Campath-1 monoclonal antibodies Exp Hematol 1999 27: 1210–1218

    Article  CAS  PubMed  Google Scholar 

  12. Wekerle T et al. Role of peripheral clonal deletion in tolerance induction with bone marrow transplantation and costimulatory blockade Transplant Proc 1999 31: 680

    Article  CAS  PubMed  Google Scholar 

  13. Quesenberry PJ et al. Engraftment of hematopoietic stem cells in nonmyeloablated and myeloablated hosts Stem Cells 1997 15: 167–169

    Article  PubMed  Google Scholar 

  14. Rao SS et al. Stem cell transplantation in the normal nonmyeloablated host: relationship between cell dose, schedule, and engraftment Exp Hematol 1997 25: 114–121

    CAS  PubMed  Google Scholar 

  15. Ildstad ST, Sachs DH . Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts Nature 1984 307: 168–170

    Article  CAS  PubMed  Google Scholar 

  16. Exner BG et al. Mixed allogeneic chimerism to induce tolerance to solid organ and cellular grafts Acta Haematol 1999 101: 78–81

    Article  CAS  PubMed  Google Scholar 

  17. Exner BG et al. Clinical applications of mixed chimerism Ann NY Acad Sci 1999 872: 377–385

    Article  CAS  PubMed  Google Scholar 

  18. Heim DA et al. Introduction of a xenogeneic gene via hematopoietic stem cells leads to specific tolerance in a rhesus monkey model Mol Ther 2000 1: 533–544

    Article  CAS  PubMed  Google Scholar 

  19. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ . Murine marrow cells expanded in culture with IL-3, IL-6, IL-11 and SCF acquire an engraftment defect in normal hosts (published erratum appears in Exp Hematol 1995; 23: 568) Exp Hematol 1995 23: 461–469

    CAS  PubMed  Google Scholar 

  20. Kittler EL et al. Cytokine-facilitated transduction leads to low-level engraftment in nonablated hosts Blood 1997 90: 865–872

    CAS  PubMed  Google Scholar 

  21. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ . Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL- 6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts Blood 1996 87: 30–37

    CAS  PubMed  Google Scholar 

  22. Sekhar M, Yu JM, Soma T, Dunbar CE . Murine long-term repopulating ability is compromised by ex vivo culture in serum-free medium despite preservation of committed progenitors J Hematother 1997 6: 543–549

    Article  CAS  PubMed  Google Scholar 

  23. Miller CL, Eaves CJ . Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability Proc Natl Acad Sci USA 1997 94: 13648–13653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Albella B et al. Preserved long-term repopulation and differentiation properties of hematopoietic grafts subjected to ex vivo expansion with stem cell factor and interleukin 11 Transplantation 1999 67: 1348–1357

    Article  CAS  PubMed  Google Scholar 

  25. Wognum AW et al. Stimulation of mouse bone marrow cells with kit ligand, FLT3 ligand, and thrombopoietin leads to efficient retrovirus-mediated gene transfer to stem cells, whereas interleukin 3 and interleukin 11 reduce transduction of short- and long-term repopulating cells Hum Gene Ther 2000 11: 2129–2141

    Article  CAS  PubMed  Google Scholar 

  26. Stewart FM et al. Long-term engraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice Blood 1993 81: 2566–2571

    CAS  PubMed  Google Scholar 

  27. Blomberg M et al. Repetitive bone marrow transplantation in nonmyeloablated recipients Exp Hematol 1998 26: 320–324

    CAS  PubMed  Google Scholar 

  28. Miller AD, Miller DG, Garcia JV, Lynch CM . Use of retroviral vectors for gene transfer and expression Meth Enzymol 1993 217: 581–599

    Article  CAS  Google Scholar 

  29. McSweeney PA, Storb R . Mixed chimerism: preclinical studies and clinical applications Biol Blood Marrow Transplant 1999 5: 192–203

    Article  CAS  PubMed  Google Scholar 

  30. Vriesendorp HM, van Bekkum DW . Role of total body irradiation in conditioning for bone marrow transplantation Hamatol Bluttransfus 1980 25: 349–364

    CAS  Google Scholar 

  31. Tomita Y, Sachs DH, Sykes M . Myelosuppressive conditioning is required to achieve engraftment of pluripotent stem cells contained in moderate doses of syngeneic bone marrow Blood 1994 83: 939–948

    CAS  PubMed  Google Scholar 

  32. Barquinero J et al. Myelosuppressive conditioning improves autologous engraftment of genetically marked hematopoietic repopulating cells in dogs Blood 1995 85: 1195–1201

    CAS  PubMed  Google Scholar 

  33. Mardiney III M, Malech HL . Enhanced engraftment of hematopoietic progenitor cells in mice treated with granulocyte colony-stimulating factor before low-dose irradiation: implications for gene therapy Blood 1996 87: 4049–4056

    Google Scholar 

  34. Berger C et al. Nonmyeloablative immunosuppressive regimen prolongs in vivo persistence of gene-modified autologous T cells in a nonhuman primate model J Virol 2001 75: 799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stewart FM et al. Lymphohematopoietic engraftment in minimally myeloablated hosts Blood 1998 91: 3681–3687

    CAS  PubMed  Google Scholar 

  36. Stripecke R et al. Immune response to green fluorescent protein: implications for gene therapy Gene Therapy 1999 6: 1305–1312

    Article  CAS  PubMed  Google Scholar 

  37. Izembart A et al. In vivo retrovirus-mediated gene transfer to the liver of dogs results in transient expression and induction of a cytotoxic immune response Hum Gene Ther 1999 10: 2917–2925

    Article  CAS  PubMed  Google Scholar 

  38. Schiffmann R et al. Transfer of the human glucocerebrosidase gene into hematopoietic stem cells of nonablated recipients: successful engraftment and long-term expression of the transgene Blood 1995 86: 1218–1227

    CAS  PubMed  Google Scholar 

  39. Kang E et al. In vivo persistence of retrovirally transduced murine long-term repopulating cells is not limited by expression of foreign gene products in the fully or minimally myeloablated setting Hum Gene Ther 2001 12: 1663–1672

    Article  CAS  PubMed  Google Scholar 

  40. Carter RF et al. Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors Blood 1992 79: 356–364

    CAS  PubMed  Google Scholar 

  41. Rosenzweig M et al. Efficient and durable gene marking of hematopoietic progenitor cells in nonhuman primates after nonablative conditioning Blood 1999 94: 2271–2286

    CAS  PubMed  Google Scholar 

  42. Lutzko C et al. Genetically corrected autologous stem cells engraft, but host immune responses limit their utility in canine alpha-L-iduronidase deficiency Blood 1999 93: 1895–1905

    CAS  PubMed  Google Scholar 

  43. Rosenzweig M et al. Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells Blood 2001 97: 1951–1959

    Article  CAS  PubMed  Google Scholar 

  44. Varas F, Bernard A, Bueren JA . Restrictions in the stem cell function of murine bone marrow grafts after ex vivo expansion of short-term repopulating progenitors Exp Hematol 1998 26: 100–109

    CAS  PubMed  Google Scholar 

  45. Qin S et al. Competitive repopulation of retrovirally transduced haemopoietic stem cells Br J Haematol 1999 107: 162–168

    Article  CAS  PubMed  Google Scholar 

  46. Ramshaw HS et al. Engraftment of bone marrow cells into normal unprepared hosts: effects of 5-fluorouracil and cell cycle status Blood 1995 86: 924–929

    CAS  PubMed  Google Scholar 

  47. D'Hondt L et al. Influence of timing of administration of 5-fluorouracil to donors on bone marrow engraftment in nonmyeloablated hosts Int J Hematol 2001 74: 79–85

    Article  CAS  PubMed  Google Scholar 

  48. Limon A et al. High-titer retroviral vectors containing the enhanced green fluorescent protein gene for efficient expression in hematopoietic cells Blood 1997 90: 3316–3321

    CAS  PubMed  Google Scholar 

  49. Baum C et al. Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells J Virol 1995 69: 7541–7547

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bodine DM, McDonagh KT, Seidel NE, Nienhuis AW . Survival and retrovirus infection of murine hematopoietic stem cells in vitro: effects of 5-FU and method of infection Exp Hematol 1991 19: 206–212

    CAS  PubMed  Google Scholar 

  51. Lee JC, Hapel AJ, Ihle JN . Constitutive production of a unique lymphokine (IL 3) by the WEHI-3 cell line J Immunol 1982 128: 2393–2398

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Juan Bueren and Jesus Martínez (CIEMAT, Madrid, Spain) for providing the donor mice, the personnel of the animal facility and radiation therapy of the Institut de Recerca Oncologica for their help, and Rainer Storb and Robert Tjin for the critical review of the manuscript. This work was supported by grants: FIS (99/1074 and 00/0771), Fundació La Marató de TV3 (98/2410 and 00/5410), and INHERINET, Quality of Life programme of the 5th Framework Programme of the European Commission (QLK3-CT-2001-00427). T Puig and L Luquín were supported by a predoctoral fellowship from CIRIT (Spain).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puig, T., Kádár, E., Limón, A. et al. Myeloablation enhances engraftment of transduced murine hematopoietic cells, but does not influence long-term expression of the transgene. Gene Ther 9, 1472–1479 (2002). https://doi.org/10.1038/sj.gt.3301826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301826

Keywords

This article is cited by

Search

Quick links