Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Session IV – Chromosome Engineering

Construction of neocentromere-based human minichromosomes for gene delivery and centromere studies

Abstract

Human neocentromeres are fully functional centromeres that arise naturally in non-centromeric regions devoid of α-satellite DNA. We have successfully produced a series of minichromosomes by telomere-associated truncation of a marker chromosome mardel(10) containing a neocentromere. The resulting minichromosomes are either linear or circular in nature, and range in size from approximately 650 kb to 2 Mb. These minichromosomes exhibit full centromeric activity, bind to essential centromere proteins, and are mitotically stable over many generations. They provide a useful system for dissecting the functional domains of complex eukaryotic centromeres and as vectors for therapeutic gene delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Voullaire LE, Slater HR, Petrovic V, Choo KHA . A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 1993 52: 1153–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  2. du Sart D et al. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA Nat Genet 1997 16: 144–153

    Article  CAS  Google Scholar 

  3. Barry AE et al. Sequence analysis of an 80 kb human neocentromere Hum Mol Genet 1999 8: 217–227

    Article  CAS  Google Scholar 

  4. Barry AE et al. The 10q25 neocentromere and its inactive progenitor have identical primary nucleotide sequence: further evidence for epigenetic modification Genome Res 2000 10: 832–838

    Article  CAS  Google Scholar 

  5. Saffery R et al. Components of the human spindle checkpoint control mechanism localize specifically to the active centromere on dicentric chromosomes Hum Genet 2000 107: 376–384

    Article  CAS  Google Scholar 

  6. Saffery R et al. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins Hum Mol Genet 2000 9: 175–185

    Article  CAS  Google Scholar 

  7. Lo AW et al. A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere Embo J 2001 20: 2087–2096

    Article  CAS  Google Scholar 

  8. Lo AW et al. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA Genome Res 2001 11: 448–457

    Article  CAS  Google Scholar 

  9. Choo KHA . Domain organisation at the centromere and neocentromere Dev Cell 2001 1: 165–177

    Article  CAS  Google Scholar 

  10. Warburton PE et al. Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere Am J Hum Genet 2000 66: 1794–1806

    Article  CAS  Google Scholar 

  11. Farr CJ et al. Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation Embo J 1995 14: 5444–5454

    Article  CAS  Google Scholar 

  12. Heller R, Brown KE, Burgtorf C . Brown WR.. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage Proc Natl Acad Sci USA 1996 93: 7125–7130

    Article  CAS  Google Scholar 

  13. Saffery R et al. Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation Proc Natl Acad Sci USA 2001 98: 5705–5710

    Article  CAS  Google Scholar 

  14. Brown WRA, Mee PJ, Shen MH . Artificial chromosomes: ideal vectors? Trends Biotech 2000 18: 218–223

    Article  CAS  Google Scholar 

  15. Willard HF . Neocentromeres and human artificial chromosomes: an unnatural act Proc Natl Acad Sci USA 2001 98: 5705–5710

    Article  Google Scholar 

  16. Choo KHA . Engineering human chromosomes for gene therapy studies Trends Mol Med 2001 7: 235–237

    Article  CAS  Google Scholar 

  17. Saffery R, Choo KHA . Strategies for engineering human chromosomes with therapeutic potential J Gene Med 2002 4: 5–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, L., Saffery, R. & Choo, K. Construction of neocentromere-based human minichromosomes for gene delivery and centromere studies. Gene Ther 9, 724–726 (2002). https://doi.org/10.1038/sj.gt.3301756

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301756

Keywords

This article is cited by

Search

Quick links