Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Intratumoral administration of an adenovirus expressing a kinase dead form of ErbB-2 inhibits tumor growth

Abstract

ErbB-2 is amplified or overexpressed in a number of different cancers including breast, ovarian, lung, prostate and stomach. This overexpression leads to enhanced receptor dimer formation and stabilization allowing the receptor to remain in an active state. The clinical consequences of ErbB-2 overexpression include increased tumor aggressiveness, poor prognosis, decreased patient survival and resistance to chemotherapy. As a result, a variety of different strategies are being examined to inhibit its function or expression. In this study, we explored the efficacy of a type 5 recombinant adenovirus encoding a kinase dead form of ErbB-2, AderbB-2Δtk, as a potential therapeutic agent for breast cancer using a murine breast model expressing constitutively active ErbB-2. Co-expression in tumor cells of the kinase dead form of ErbB-2 inhibits receptor activity and induces the death of cells expressing constitutively active ErbB-2. In addition, AderbB-2Δtk exhibits antitumor activity in both immune-competent and immune-deficient animals with increased antitumor activity in the immune-competent animals. The results suggest both immune and non-immune mechanisms contribute to the antitumor efficacy of this vector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bargmann CI, Hung MC, Weinberg RA . The neu oncogene encodes an epidermal growth factor receptor-related protein Nature 1986 319: 226–230

    Article  CAS  PubMed  Google Scholar 

  2. Yamamoto T et al. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor Nature 1986 319: 230–234

    Article  CAS  PubMed  Google Scholar 

  3. Slamon DJ et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene Science 1987 235: 177–182

    Article  CAS  PubMed  Google Scholar 

  4. Scheurle D et al. HER-2/neu expression in archival non-small cell lung carcinomas using FDA-approved Hercep test Anticancer Res 2000 20: 2091–2096

    CAS  PubMed  Google Scholar 

  5. Sadasivan R et al. Overexpression of Her-2/neu may be an indicator of poor prognosis in prostate cancer J Urol 1993 150: 126–131

    Article  CAS  PubMed  Google Scholar 

  6. Ishikawa T et al. Amplification of the c-erbB-2 (HER-2/neu) gene in gastric cancer cells. Detection by fluorescence in situ hybridization Am J Pathol 1997 151: 761–768

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hung MC, Lau YK . Basic science of HER-2/neu: a review Semin Oncol 1999 26: 51–59

    CAS  PubMed  Google Scholar 

  8. Paterson MC et al. Correlation between c-erbB-2 amplification and risk of recurrent disease in node-negative breast cancer Cancer Res 1991 5155: 556–567

    Google Scholar 

  9. Andrulis IL et al. Neu/erbB-2 amplification identifies a poor prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group J Clin Oncol 1998 16: 1340–1349

    Article  CAS  PubMed  Google Scholar 

  10. Menard S, Tagliabue E, Campiglio M, Pupa S . Role of HER2 gene overexpression in breast carcinoma J Cell Physiol 2000 182: 150–162

    Article  CAS  PubMed  Google Scholar 

  11. Ross JS, Fletcher JA . HER-2/neu (c-erb-B2) gene and protein in breast cancer Am J Clin Pathol 1999 112: S53–S67

    CAS  PubMed  Google Scholar 

  12. Muller WJ et al. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene Cell 1988 54: 105–115

    Article  CAS  PubMed  Google Scholar 

  13. Bouchard L, Lammare L, Tremblay PJ, Jolicoeur P . Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene Cell 1989 57: 931–936

    Article  CAS  PubMed  Google Scholar 

  14. Guy CT, Cardiff RD, Muller WJ . Activated neu induces rapid tumor progression J Biol Chem 1996 271: 7673–7678

    Article  CAS  PubMed  Google Scholar 

  15. Yu D et al. c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties Cancer Res 1994 54: 3260–3266

    CAS  PubMed  Google Scholar 

  16. Yusa K et al. Low metastatic potential of clone from murine colon adenocarcinoma 26 increased by transfection of activated c-erbB-2 gene J Natl Cancer Inst 1990 82: 1633–1636

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Chang C-J, Bacus SS, Hung MC . Suppressed transformation and induced differention of HER-2/neu overexpressing breast cancer cells by emodin Cancer Res 1995 55: 3890–3896

    CAS  PubMed  Google Scholar 

  18. Chang JY et al. The tumor suppression activity of E1A in HER-2/neu overexpressing breast cancer Oncogene 1997 14: 561–568

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki T et al. Adenovirus-mediated ribozyme targeting of HER-2/neu inhibits in vivo growth of breast cancer cells Gene Therapy 2000 7: 241–248

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Hung MC . Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin Oncogene 1996 12: 571–576

    CAS  PubMed  Google Scholar 

  21. Alroy I, Yarden Y . The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand receptor interactions FEBS Lett 1997 410: 83–86

    Article  CAS  PubMed  Google Scholar 

  22. Graus-Porta D, Beerli RR, Daly JM, Hynes NE . ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling EMBO J 1997 16: 1647–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Messerle K, Schlegel J, Hynes N, Groner B . NIH/3T3 cells transformed with the activated erbB-2 oncogene can be phenotypically reverted by a kinase deficient dominant negative erbB-2 variant Mol Cell Endocrinol 1994 105: 1–10

    Article  CAS  PubMed  Google Scholar 

  24. Disis ML et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer Cancer Res 1994 54: 16–20

    CAS  PubMed  Google Scholar 

  25. Bei R et al. Immune responses to all erbB family receptors detectable in serum of cancer patients Oncogene 1999 18: 1267–1275

    Article  CAS  PubMed  Google Scholar 

  26. Amici A et al. DNA vaccination with full-length or truncated Neu induces protective immunity against development of spontaneous mammary tumors in HER-2/neu transgenic mice Gene Therapy 2000 7: 703–706

    Article  CAS  PubMed  Google Scholar 

  27. Bernards R et al. Effective tumor immunotherapy directed against an oncogene encoded product using a vaccinia virus vector Proc Natl Acad Sci USA 1987 84: 6854–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y et al. Induction of erbB-2/neu specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by co-transduction of gene encoding IL-12 Gene Therapy 2001 8: 316–323

    Article  CAS  PubMed  Google Scholar 

  29. Deshane J et al. Targeted tumor killing via an intracellular antibody against erbB-2 J Clin Invest 1995 96: 2980–2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deshane J et al. Intracellular antibody against erbB-2 mediates targeted tumor cell eradication by apoptosis Cancer Gene Ther 1996 3: 89–98

    CAS  PubMed  Google Scholar 

  31. Xing X et al. The ets protein PEA3 suppresses HER-2/neu overexpression and inhibits tumorigenesis Nat Med 2000 6: 189–195

    Article  CAS  PubMed  Google Scholar 

  32. Ronchetti A et al. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines J Immunol 1999 163: 130–136

    CAS  PubMed  Google Scholar 

  33. Shi Y, Zheng W, Rock KL . Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses Proc Natl Acad Sci USA 2000 97: 14590–14595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schreiber M, Muller WJ, Singh G, Graham FL . Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p118INK4C, p19INK4D, p21(WAF1/CIP1) and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity Oncogene 1999 18: 1663–1676

    Article  CAS  PubMed  Google Scholar 

  35. Schreiber M, Muller WJ, Singh G, Graham FL . Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p118INK4C, p19INK4D, p21(WAF1/CIP1) and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity Ng P, Graham FL. Construction of first generation adenoviral vectors. In: Morgon JR (ed.). Methods in Molecular Medicine, Gene Therapy Protocols, 2nd edn. Humana Press: Totowa, 2001, pp 389–413.

    Google Scholar 

  36. Siegel PM, Dankort DL, Hardy WR, Muller WJ . Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors Mol Cell Biol 1994 14: 7068–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siegel PM, Muller WJ . Mutations affecting conserved cysteine residues within the extracellular domain of Neu promote receptor dimerization and activation Proc Natl Acad Sci USA 1996 93: 8878–8883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the excellent technical help of Duncan Chong, Xueya Feng and Mary Jo Smith. This work was supported by the Canadian Institutes of Health Research, the Breast Cancer Society of Canada, and CANVAC to YW and by the Canadian Breast Cancer Research Initiative to WJM. N Sharan is a recipient of a US Army studentship. WJ Muller is a recipient of CIHR Scientist award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, K., Sharan, N., Emtage, P. et al. Intratumoral administration of an adenovirus expressing a kinase dead form of ErbB-2 inhibits tumor growth. Gene Ther 9, 898–905 (2002). https://doi.org/10.1038/sj.gt.3301712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301712

Keywords

This article is cited by

Search

Quick links