Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

An effective immunization and cancer treatment with activated dendritic cells transduced with full-length wild-type p53

Abstract

P53-based immunization is an attractive approach to cancer immunotherapy due to the accumulation of p53 protein in tumor, but not in normal cells. However, it was not known whether immune response against self-protein (p53) could be generated in vivo. Mouse dendritic cells (DCs) were transduced with adenoviral construct containing murine full-length wild-type p53 (Ad-p53). Repeated immunizations with these cells protected 60% of mice against challenge with MethA sarcoma cells bearing point mutations in p53 gene. Activation of DCs via ligation of CD40 significantly improved the results of immunization: all mice were protected against MethA sarcoma. The treatment of MethA tumor-bearing mice with activated Ad-p53-transduced DCs showed complete tumor rejection in four out of six mice. The specificity of antitumor immune response was confirmed by CTL assay. The analysis of phenotype and function of DCs demonstrated that the effect of CD40 ligation on these cells was enhanced by their infection with Ad-p53. The level of neutralizing anti-adenovirus antibody was moderately elevated in these mice. No signs of autoimmune reaction were evident during detailed pathological evaluation of treated mice. These data demonstrate that activated Ad-p53-infected DCs are able to break tolerance to this protein and can be used in immunotherapy of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Siliciano J. et al. DNA damage induces phosphorylation of the amino terminus of p53 Genes Dev 1997 11: 3471 3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. el-Deiry W.S. . WAF1, a potential mediator of p53 tumor suppression Cell 1993 75: 817 817

    Article  CAS  PubMed  Google Scholar 

  3. Harris C.C. . Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies J Natl Cancer Inst 1996 88: 1442 1442

    Article  CAS  PubMed  Google Scholar 

  4. Hermeking H. et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression Mol Cell 1997 1: 3 3

    Article  CAS  PubMed  Google Scholar 

  5. Miyashita T., Reed J.C. . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene Cell 1995 80: 293 293

    Article  CAS  PubMed  Google Scholar 

  6. Polyak K. et al. A model for p53-induced apoptosis Nature 1997 389: 300 300

    Article  CAS  PubMed  Google Scholar 

  7. Rogel A. et al. p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors Mol Cell Biol 1985 5: 2851 2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prokocimer M., Rotter V. . Structure and function of p53 in normal cells and their aberrations in cancer cells: projection on the hematologic cell lineages Blood 1993 84: 2391 2391

    Google Scholar 

  9. Kaelin W.G. . The emerging p53 gene family J Natl Cancer Inst 1999 91: 594 594

    Article  CAS  PubMed  Google Scholar 

  10. Levine A.J., Momand J., Finlay C.A. . The p53 tumour suppressor gene Nature 1991 351: 453 453

    Article  CAS  PubMed  Google Scholar 

  11. Yanuck M. et al. Mutant p53 tumor suppressor protein is a target for peptide-induced CD8+ cytotoxic T-cells Cancer Res 1993 53: 3257 3257

    CAS  PubMed  Google Scholar 

  12. Vierboom M.P.M. et al. Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes J Exp Med 1997 186: 695 695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Theobald M. et al. Targeting p53 as a general tumor antigen Proc Natl Acad Sci USA 1995 92: 11993 11993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mayordomo J.I. et al. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines J Exp Med 1996 183: 1357 1357

    Article  CAS  PubMed  Google Scholar 

  15. Gabrilovich D.I. et al. Dendritic cells in anti-tumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice are effective antigen carriers in the therapy of established tumors Cell Immunol 1996 170: 111 111

    Article  CAS  PubMed  Google Scholar 

  16. Gabrilovich D.I., Cunningham H.T., Carbone D.P. . IL-12 and mutant p53 peptide-pulsed dendritic cells for the specific immunotherapy of cancer J Immunother 1997 19: 414 414

    Article  Google Scholar 

  17. Nijman H.W. . p53, a potential target for tumor-directed T cells Immunol Lett 1994 40: 171 171

    Article  CAS  PubMed  Google Scholar 

  18. Mayordomo J.I. et al. Bone-marrow derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity Nature Med 1995 1: 1297 1297

    Article  CAS  PubMed  Google Scholar 

  19. Ropke M. et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide Proc Natl Acad Sci USA 1996 93: 14704 14704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chikamatsu K. et al. Generation of anti-p53 cytotoxic T lymphocytes from human peripheral blood using auologous dendritic cells Clin Cancer Res 1999 5: 1281 1281

    CAS  PubMed  Google Scholar 

  21. Ryan M.H., Abrams S.I. . Characterization of CD8+ cytotoxic T lymphocyte/tumor cell interactions reflecting recognition of an endogenously expressed murine wild-type determinant Cancer Immunol Immunother 2001 49: 603 603

    Article  CAS  Google Scholar 

  22. Ishida T. et al. Dendritic cells transduced with wild type p53 gene elicit potent antitumor immune responses Clin Exp Immunol 1999 117: 244 244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nikitina E.Y. et al. Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients Clin Cancer Res 2001 7: 127 127

    CAS  PubMed  Google Scholar 

  24. Theobald M. et al. Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes J Exp Med 1997 185: 833 833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Theobald M. et al. Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes

  26. Vierboom MPM et al. P53: a target for T-cell-mediated immunotherapy. In: Kast WM (ed.). Peptide-based Cancer Vaccines. Landes Bioscience: 2000, pp 40–48 Vaccine 1998 16: 208 208

  27. Avigan D. et al. Dendritic cells: development, function and potential use for cancer immunotherapy Blood Rev 1999 13: 51 51

    Article  CAS  PubMed  Google Scholar 

  28. Timmerman J.M., Levy R. . Dendritic cell vaccines for cancer immunotherapy Ann Rev Med 1999 50: 507 507

    Article  CAS  PubMed  Google Scholar 

  29. Chen C.-H., Wu T.C. . Experimental vaccine strategies for cancer immunotherapy J Biomed Sci 1998 5: 231 231

    Article  CAS  PubMed  Google Scholar 

  30. Chen P., Kovesdi I., Bruder J.T. . Effective repeat administration with adenovirus vectors to the muscle Gene Therapy 2000 7: 587 587

    Article  CAS  PubMed  Google Scholar 

  31. Brossart P. et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270 3270

    CAS  PubMed  Google Scholar 

  32. Fujita H. et al. Evidence that HLA class II-restricted human CD4+ T cells specific to p53 self peptides respond to p53 proteins of both wild and mutant forms Eur J Immunol 1998 28: 305 305

    Article  CAS  PubMed  Google Scholar 

  33. Labeur M.S. et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage J Immunol 1999 162: 168 168

    CAS  PubMed  Google Scholar 

  34. Shurin M.R., Gabrilovich D.I. . Regulation of dendritic cell system by tumor Cancer Res Ther Cont 2001 11: 65 65

    Google Scholar 

  35. Almand B. et al. Increased production of immature myeloid cells in cancer patients. A mechanism of immunosuppression in cancer J Immunol 2001 166: 678 678

    Article  CAS  PubMed  Google Scholar 

  36. Aiba S., Tagami H. . Dendritic cell activation induced by various stimuli, eg exposure to microorganisms, their products, cytokines, and simple chemicals as well as adhesion to extracellular matrix J Dermatol Sci 1999 20: 1 1

    Article  CAS  Google Scholar 

  37. Young J.W. . Dendritic cells: expansion and differentiation with hematopoietic growth factors Curr Opin Hematol 1999 6: 135 135

    Article  CAS  PubMed  Google Scholar 

  38. Ridge J.P., Di Rosa F., Matzinger P. . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell Nature 1998 393: 474 474

    Article  CAS  PubMed  Google Scholar 

  39. Klein C., Bueler H., Mulligan R.C. . Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines J Exp Med 2000 191: 1699 1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rea D. et al. Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset J Virol 1999 73: 10245 10245

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant RPG 99-032 from American Cancer Society to DIG.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitina, E., Chada, S., Muro-Cacho, C. et al. An effective immunization and cancer treatment with activated dendritic cells transduced with full-length wild-type p53. Gene Ther 9, 345–352 (2002). https://doi.org/10.1038/sj.gt.3301670

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301670

Keywords

This article is cited by

Search

Quick links