Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

LCR-mediated, long-term tissue-specific gene expression within replicating episomal plasmid and cosmid vectors

Abstract

Locus control regions (LCRs) are transcriptional regulatory elements, which possess a dominant chromatin remodelling and transcriptional activating capability conferring full physiological levels of expression on a gene linked in cis, when integrated into the host cell genome. Using the human β-globin LCR (βLCR) as a model, we show that this class of control element can drive high levels of tissue-specific gene expression in stably transfected cultured cells from within an Epstein–Barr virus-based plasmid REV. Furthermore, a 38-kb βLCR minilocus-REV cosmid vector was efficiently retained and maintained therapeutic levels of β-globin transgene expression in the absence of drug selective pressure over a 2-month period of continuous culture equivalent to at least 60 generations. This demonstrates for the first time the feasibility of using REVs for gene therapy of the haemoglobinopathies. Importantly, our results demonstrate that as in the case of integrated transgenes, expression from within REVs is prone to silencing but that the inclusion of the βLCR prevented this repression of gene function. Therefore, appropriate control elements to provide and maintain tissue-specific gene expression, as well as the episomal status of REVs is a crucial feature in vector design. Our data suggest that LCRs can contribute to this vital function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sclimenti C.R., Calos M.P. . Epstein–Barr virus vectors for gene expression and transfer Curr Opin Biotechnol 1998 9: 476 476

    Article  CAS  Google Scholar 

  2. Sun T.Q., Fernstermacher D.A., Vos J.M. . Human artificial episomal chromosomes for cloning large DNA fragments in human cells Nat Genet 1994 8: 33 33

    Article  CAS  Google Scholar 

  3. Satoh E. et al. Efficient gene transduction by Epstein–Barr virus-based vectors coupled with cationic liposome and HVJ-liposom Biochem Biophys Res Commun 1997 238: 795 795

    Article  CAS  Google Scholar 

  4. Saeki Y., Wataya-Kaneda M., Tanaka K., Kaneda Y. . Sustained transgene expression in vitro and in vivo using an Epstein–Barr virus replicon vector system combined with HVJ liposomes Gene Therapy 1998 5: 1031 1031

    Article  CAS  Google Scholar 

  5. Tsukamoto H. et al. Enhanced expression of recombinant dystrophin following intramuscular injection of Epstein–Barr virus (EBV)-based mini-chromosome vectors in mdx mice Gene Therapy 1999 6: 1331 1331

    Article  CAS  Google Scholar 

  6. Yates J.L., Warren N., Sugden B. . Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells Nature 1985 313: 812 812

    Article  CAS  Google Scholar 

  7. De Benedetti A., Rhoads R.E. . A novel BK virus-based episomal vector for expression of foreign genes in mammalian cells Nucleic Acids Res 1991 19: 1925 1925

    Article  CAS  Google Scholar 

  8. Sabbioni S. et al. A BK virus episomal vector for constitutive high expression of exogenous cDNAs in human cells Arch Virol 1995 140: 335 335

    Article  CAS  Google Scholar 

  9. Ohe Y., Zhao D., Saijo N., Podack E.R. . Construction of a novel bovine papillomavirus vector without detectable transforming activity suitable for gene transfer Hum Gene Ther 1995 6: 325 325

    Article  CAS  Google Scholar 

  10. Cooper M.J. et al. Safety-modified episomal vectors for human gene therapy Proc Natl Acad Sci USA 1997 94: 6450 6450

    Article  CAS  Google Scholar 

  11. Krysan P.J., Haase S.B., Calos M.P. . Isolation of human sequences that replicate autonomously in human cells Mol Cell Biol 1989 9: 1026 1026

    Article  CAS  Google Scholar 

  12. Wohlgemuth J.G. et al. Long-term expression from autonomously replicating vectors in mammalian cells Gene Therapy 1996 3: 503 503

    CAS  Google Scholar 

  13. Reeves R., Gorman C.M., Howard B. . Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells Nucleic Acids Res 1985 13: 3599 3599

    Article  CAS  Google Scholar 

  14. Archer T.K., Lefebvre P., Wolford R.G., Hager G.L. . Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation Science 1992 255: 1573 1573

    Article  CAS  Google Scholar 

  15. Cereghini S., Yaniv M. . Assembly of transfected DNA into chromatin: structural changes in the origin-promoter-enhancer region upon replication EMBO J 1984 3: 1243 1243

    Article  CAS  Google Scholar 

  16. Smith C.L., Archer T.K., Hamlin-Green G., Hager G.L. . Newly expressed progesterone receptor cannot activate stable, replicated mouse mammary tumor virus templates but acquires transactivation potential upon continuous expression Proc Natl Acad Sci USA 1993 90: 11202 11202

    Article  CAS  Google Scholar 

  17. Fraser P., Grosveld F. . Locus control regions, chromatin activation and transcription Curr Opin Cell Biol 1998 10: 361 361

    Article  CAS  Google Scholar 

  18. Li Q., Harju S., Peterson K.R. . Locus control regions: coming of age at a decade plus Trends Genet 1999 15: 403 403

    Article  Google Scholar 

  19. Kioussis D., Festenstein R. . Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals Curr Opin Genet Dev 1997 7: 614 614

    Article  CAS  Google Scholar 

  20. Antoniou M., Grosveld F. . Genetic approaches to therapy for the haemoglobinopathies Fairbairn LJ, Testa NG (eds); Blood Cell Biochemistry, Volume 8: Hematopoiesis and Gene Therapy Kluwer Academic/Plenum 1999 pp 219–242

  21. May C. et al. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin Nature 2000 406: 82 82

    Article  CAS  Google Scholar 

  22. Gahmberg C.G., Andersson L.C. . K562-a human leukemia cell line with erythroid features Semin Hematol 1981 18: 72 72

    CAS  PubMed  Google Scholar 

  23. BlomvanAssendelft G., Hanscombe O., Grosveld F., Greaves D.R. . The β-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner Cell 1989 56: 969 969

    Article  CAS  Google Scholar 

  24. Hirt B. . Selective extraction of polyma DNA from infected mouse cell culture J Mol Biol 1967 26: 365 365

    Article  CAS  Google Scholar 

  25. Antoniou M., deBoer E., Grosveld F. . Fine mapping of genes: the characterization of the transcriptional unit Davies KE (eds); Human Genetic Disease Analysis. A Practical Approach IRL Press 1993 pp 83–108

  26. Grosveld F., BlomvanAssendelft G.B., Greaves D.R., Kollias G. . Position-independent high level expression of the human β-globin gene in transgenic mice Cell 1987 51: 975 975

    Article  CAS  Google Scholar 

  27. WadeMartins R. et al. Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene Nature Biotechnol 2000 18: 1311 1311

    Article  CAS  Google Scholar 

  28. Hauer C.A., Getty R.R., Tykocinski M.L. . Epstein–Barr virus episome-based promoter function in human myeloid cells Nucleic Acids Res 1989 17: 1989 1989

    Article  CAS  Google Scholar 

  29. Collis P., Antoniou M., Grosveld F. . Definition of the minimal requirements within the human β-globin gene and the dominant control region for high level expression EMBO J 1990 9: 233 233

    Article  CAS  Google Scholar 

  30. Talbot D., Philipsen S., Fraser P., Grosveld F. . Detailed analysis of the site 3 region of the human β-globin dominant control region EMBO J 1990 9: 2169 2169

    Article  CAS  Google Scholar 

  31. Philipsen S., Talbot D., Fraser P., Grosveld F. . The β-globin dominant control region: hypersensitive site 2 EMBO J 1990 9: 2159 2159

    Article  CAS  Google Scholar 

  32. Pruzina S. et al. Hypersensitive site 4 of the human β-globin locus control region Nucleic Acids Res 1991 19: 1413 1413

    Article  CAS  Google Scholar 

  33. Tuan D.Y., Solomon W.B., London I.M., Lee D.P. . An erythroid-specific, developmental stage-independent enhancer far upstream of the human ‘β-like globin’ genes Proc Natl Acad Sci USA 1989 86: 2554 2554

    Article  CAS  Google Scholar 

  34. Ney P.A., Sorrentino B.P., McDonagh K.T., Nienhuis A.W. . Tandem AP-1-binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells Genes Dev 1990 4: 993 993

    Article  CAS  Google Scholar 

  35. Ney P.A., Sorrentino B.P., Lowrey C.H., Nienhuis A.W. . Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein Nucleic Acids Res 1990 18: 6011 6011

    Article  CAS  Google Scholar 

  36. Gong Q., McDowell J.C., Dean A. . Essential role of NF-E2 in remodelling of chromatin structure and transcriptional activation of the ɛ-globin gene in vivo by 5′hypersensitive site 2 of the β-globin locus control region Mol Cell Biol 1996 16: 6055 6055

    Article  CAS  Google Scholar 

  37. Lei D.C. et al. Episomal expression of wild-type CFTR corrects cAMP-dependent chloride transport in respiratory epithelial cells Gene Therapy 1996 3: 427 427

    CAS  PubMed  Google Scholar 

  38. Banerjee S., Livanos E., Vos J.M.H. . Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein–Barr virus Nature Med 1995 1: 1303 1303

    Article  CAS  Google Scholar 

  39. Piechaczek C. et al. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells Nucleic Acids Res 1999 27: 426 426

    Article  CAS  Google Scholar 

  40. Heinzel S.S., Krysan P.J., Tran C.T., Calos M.P. . Autonomous DNA replication in human cells is affected by the size and the source of the DNA Mol Cell Biol 1991 11: 2263 2263

    Article  CAS  Google Scholar 

  41. Verma I.M., Somia N. . Gene therapy – promises, problems and prospects Nature 1997 389: 239 239

    Article  CAS  Google Scholar 

  42. Antoniou M. . Induction of erythroid-specific expression in murine erythroleukemia (MEL) cell lines In: Murray EJ (eds) Methods in Molecular Biology: vol 7 Gene Transfer and Expression Protocols Humana Press 1991 pp 421–434

    Chapter  Google Scholar 

  43. Sambrook J. . Molecular Cloning: A Laboratory Manual 2nd edn Cold Spring Harbor Laboratory Press 1989

    Google Scholar 

  44. Raguz S. et al. Muscle-specific locus control region activity associated with the human desmin gene Dev Biol 1998 201: 26 26

    Article  CAS  Google Scholar 

  45. Auffray C., Rougeon F. . Purification of mouse immunoglobulin heavy-chain RNAs from total myeloma tumor RNA Eur J Biochem 1980 107: 303 303

    Article  CAS  Google Scholar 

  46. Antoniou M., DeBoer E., Habets G., Grosveld F. . The human β-globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers EMBO J 1988 7: 377 377

    Article  CAS  Google Scholar 

  47. Kozu T., Henrich B., Schafer K.P. . Structure and expression of the gene (HNRPA2B1) encoding the human hnRNP protein A2/B1 Genomics 1995 25: 365 365

    Article  CAS  Google Scholar 

  48. Ashe H.L. et al. Intergenic transcription and transinduction of the human β-globin locus Genes Dev 1997 11: 2494 2494

    Article  CAS  Google Scholar 

  49. Reitman M., Lee E., Westphal H., Felsenfeld G. . An enhancer/locus control region is not sufficient to open chromatin Mol Cell Biol 1993 13: 3990 3990

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bill Sugden for the p220.2 and cos203 EBV-based vectors. This work was initiated with support from Cobra Therapeutics (Keele, UK) and continued with funding under the European Union Framework IV Biomed-2 (contract No. BMH4-CT96-1279) and Biotechnology (contract No. BIO4-CT96-0414) programmes. AA was funded for this work by a European Union Marie Curie Fellowship (contract No. HPMF-CT-1994-00091).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, CM., Athanassiadou, A., Raguz, S. et al. LCR-mediated, long-term tissue-specific gene expression within replicating episomal plasmid and cosmid vectors. Gene Ther 9, 327–336 (2002). https://doi.org/10.1038/sj.gt.3301654

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301654

Keywords

This article is cited by

Search

Quick links