Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

HSV-mediated delivery of virally derived anti-apoptotic genes protects the rat hippocampus from damage following excitotoxicity, but not metabolic disruption

Abstract

Studies utilizing gene delivery to the nervous system indicate that various strategies are protective following acute neurological insults such as seizure and stroke. We have found that inhibitors of apoptosis are protective against excitotoxicity and heat stress but not energetic impairment in vitro. Here we studied the neuroprotective efficacy in vivo of these mediators: viral genes (crmA, p35, γ34.5 KsBcl-2) that have evolved to suppress suicidal host responses to infection, by inhibiting apoptosis. We investigated these effects by utilizing modified herpes vectors to deliver the anti-apoptotic agents intracerebrally and examined them in the face of excitotoxic and metabolic insults. We found that p35 and γ34.5 reduced by 45% a hippocampal CA3 lesion caused by kainic acid, while crmA and KsBcl-2 did not. None of the inhibitors protected the dentate gyrus of the hippocampus following 3-acetylpyridine, a hypoglycemia model, but we found crmA to worsen the damage. These data are similar to our results in neuronal cultures where the inhibitors protected against the excitotoxin domoic acid, but not against the metabolic poison, cyanide. Together, the results suggest that inhibitors of various apoptotic elements are capable of protecting under acute insult conditions both in vitro and in vivo, suggesting possible future therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Martin L.J. et al. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis Brain Res Bull 1998 46: 281 281

    Article  CAS  Google Scholar 

  2. Wullner U. et al. Evidence for an active type of cell death with ultrastructural features distinct from apoptosis: the effects of 3-acetylpyridine neurotoxicity Neuroscience 1997 81: 721 721

    Article  CAS  Google Scholar 

  3. Fujikawa D.G., Shinmei S.S., Cai B. . Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms Neuroscience 2000 98: 41 41

    Article  CAS  Google Scholar 

  4. Xu D.G. et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus Nat Med 1997 3: 997 997

    Article  CAS  Google Scholar 

  5. Xu D.G. et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus

  6. Betz AL, Schielke GP, Yang GY. Interleukin-1 in cerebral ischemia. Keio J Med 1996; 45: 230–237; discussion 238 Proc Natl Acad Sci USA 1995 92: 7247 7247

    Article  CAS  Google Scholar 

  7. Phillips R.G. et al. Calbindin D28K gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults J Neurochem 1999 73: 1200 1200

    Article  CAS  Google Scholar 

  8. Phillips R.G., Lawrence M.S., Ho D.Y., Sapolsky R.M. . Limitations in the neuroprotective potential of gene therapy with Bcl-2 Brain Res 2000 859: 202 202

    Article  CAS  Google Scholar 

  9. Sapolsky R.M., Steinberg G.K. . Gene therapy using viral vectors for acute neurologic insults Neurology 1999 53: 1922 1922

    Article  CAS  Google Scholar 

  10. Lawrence M.S. et al. Overexpression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo J Neurosci 1996 16: 486 486

    Article  CAS  Google Scholar 

  11. Lawrence M.S. et al. Overexpression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo

  12. Linnik MD, Zahos P, Geschwind MD, Federoff HJ. Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 1995; 26: 1670–1674; discussion 1675 Exp Neurol 1999 156: 130 130

    Article  CAS  Google Scholar 

  13. Myers K.M. et al. Bcl-2 protects neural cells from cyanide/aglycemia-induced lipid oxidation mitochondrial injury and loss of viability J Neurochem 1995 65: 2432 2432

    Article  CAS  Google Scholar 

  14. Zhou Q. et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex Biochemistry 1998 37: 10757 10757

    Article  CAS  Google Scholar 

  15. Bump N.J. et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35 Science 1995 269: 1885 1885

    Article  CAS  Google Scholar 

  16. Chou J., Roizman B. . The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells Proc Natl Acad Sci USA 1992 89: 3266 3266

    Article  CAS  Google Scholar 

  17. Palumbo G.J. et al. Inhibition of an inflammatory response is mediated by a 38-kDa protein of cowpox virus Virology 1989 172: 262 262

    Article  CAS  Google Scholar 

  18. Pickup D.J. et al. Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases Proc Natl Acad Sci USA 1986 83: 7698 7698

    Article  CAS  Google Scholar 

  19. Cheng E.H. et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak Proc Natl Acad Sci USA 1997 94: 690 690

    Article  CAS  Google Scholar 

  20. Roy M., Hom J., Sapolsky R.M. . Neuroprotection with herpes simplex vectors expressing virally derived anti-apoptotic agents Brain Res 2001 901: 12 12

    Article  CAS  Google Scholar 

  21. Fink S.L., Chang L.K., Ho D.Y., Sapolsky R.M. . Defective herpes simplex virus vectors expressing the rat brain stress-inducible heat shock protein 72 protect cultured neurons from severe heat shock J Neurochem 1997 68: 961 961

    Article  CAS  Google Scholar 

  22. Dash R., Lawrence M., Ho D., Sapolsky R. . A herpes simplex virus vector overexpressing the glucose transporter gene protects the rat dentate gyrus from an antimetabolite toxin Exp Neurol 1996 137: 43 43

    Article  CAS  Google Scholar 

  23. Sperk G. . Kainic acid seizures in the rat Prog Neurobiol 1994 42: 1 1

    Article  CAS  Google Scholar 

  24. Hicks S. . Pathologic effects of antimetabolites Am J Pathol 1955 31: 189 189

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Desclin J., Escubi J. . Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods Brain Res 1974 77: 349 349

    Article  CAS  Google Scholar 

  26. Coggeshall R., MacLean P. . Hippocampal lesions following administration of 3-acetylpyridine Proc Soc Exp Biol Med 1958 98: 687 687

    Article  CAS  Google Scholar 

  27. Yenari M.A. et al. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy Ann Neurol 1998 44: 584 584

    Article  CAS  Google Scholar 

  28. Pollard H. et al. Kainate-induced apoptotic cell death in hippocampal neurons Neuroscience 1994 63: 7 7

    Article  CAS  Google Scholar 

  29. Pollard H. et al. Apoptosis associated DNA fragmentation in epileptic brain damage Neuroreport 1994 5: 1053 1053

    Article  CAS  Google Scholar 

  30. Viswanath V. et al. Transgenic mice neuronally expressing baculoviral p35 are resistant to diverse types of induced apoptosis, including seizure-associated neurodegeneration Proc Natl Acad Sci USA 2000 97: 2270 2270

    Article  CAS  Google Scholar 

  31. Venero J.L., Revuelta M., Machado A., Cano J. . Delayed apoptotic pyramidal cell death in CA4 and CA1 hippocampal subfields after a single intraseptal injection of kainate Neuroscience 1999 94: 1071 1071

    Article  CAS  Google Scholar 

  32. Filipkowski R.K., Hetman M., Kaminska B., Kaczmarek L. . DNA fragmentation in rat brain after intraperitoneal administration of kainate Neuroreport 1994 5: 1538 1538

    Article  CAS  Google Scholar 

  33. Nath R., Probert A. Jr, McGinnis K.M., Wang K.K. . Evidence for activation of caspase-3-like protease in excitotoxin- and hypoxia/hypoglycemia-injured neurons J Neurochem 1998 71: 186 186

    Article  CAS  Google Scholar 

  34. Roy M., Sapolsky R. . Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? Trends Neurosci 1999 22: 419 419

    Article  CAS  Google Scholar 

  35. Portera-Cailliau C., Price D.L., Martin L.J. . Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum J Comp Neurol 1997 378: 88 88

    Article  CAS  Google Scholar 

  36. Ferrer I. et al. Both apoptosis and necrosis occur following intrastriatal administration of excitotoxins Acta Neuropathol 1995 90: 504 504

    Article  CAS  Google Scholar 

  37. Ekert P.G., Silke J., Vaux D.L. . Caspase inhibitors Cell Death Differ 1999 6: 1081 1081

    Article  CAS  Google Scholar 

  38. Kondratyev A., Gale K. . Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus Brain Res Mol Brain Res 2000 75: 216 216

    Article  CAS  Google Scholar 

  39. Bachis A. et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity J Neurosci 2001 21: 3104 3104

    Article  CAS  Google Scholar 

  40. Srivastava R.K., Mi Q.S., Hardwick J.M., Longo D.L. . Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis Proc Natl Acad Sci USA 1999 96: 3775 3775

    Article  CAS  Google Scholar 

  41. Alirezaei M. et al. Inhibition of protein synthesis in cortical neurons during exposure to hydrogen peroxide J Neurochem 2001 76: 1080 1080

    Article  CAS  Google Scholar 

  42. Marin P. et al. Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons J Neurosci 1997 17: 3445 3445

    Article  CAS  Google Scholar 

  43. Munoz F. et al. Ischemia-induced phosphorylation of initiation factor 2 in differentiated PC12 cells: role for initiation factor 2 phosphatase J Neurochem 2000 75: 2335 2335

    Article  CAS  Google Scholar 

  44. Scorsone K.A., Panniers R., Rowlands A.G., Henshaw E.C. . Phosphorylation of eukaryotic initiation factor 2 during physiological stresses which affect protein synthesis J Biol Chem 1987 262: 14538 14538

    CAS  PubMed  Google Scholar 

  45. Alcazar A., Bazan E., Rivera J., Salinas M. . Phosphorylation of initiation factor 2 alpha subunit and apoptosis in Ca2+ ionophore-treated cultured neuronal cells Neurosci Lett 1995 201: 215 215

    Article  CAS  Google Scholar 

  46. Ho D.Y. . Amplicon-based herpes simplex virus vectors Meth Cell Biol 1994 43: 191 191

    Article  CAS  Google Scholar 

  47. Hashizume K., Tanaka T. . Multiple subpial transection in kainic acid-induced focal cortical seizure Epilepsy Res 1998 32: 389 389

    Article  CAS  Google Scholar 

  48. Henshall D.C., Sinclair J., Simon R.P. . Spatio-temporal profile of DNA fragmentation and its relationship to patterns of epileptiform activity following focally evoked limbic seizures Brain Res 2000 858: 290 290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Ted Dumas for his advice on the project. This work was supported by NIH RO1 NS32848 and the TDRDP of the State of California to RMS and an Undergraduate Research Opportunity Howard Hughes’ Grant to JJH.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, M., Hom, J. & Sapolsky, R. HSV-mediated delivery of virally derived anti-apoptotic genes protects the rat hippocampus from damage following excitotoxicity, but not metabolic disruption. Gene Ther 9, 214–219 (2002). https://doi.org/10.1038/sj.gt.3301642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301642

Keywords

This article is cited by

Search

Quick links