Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector

Abstract

Herpesvirus saimiri (HVS) has several properties that make it amenable to development as a gene delivery vector. HVS offers the potential to incorporate large amounts of heterologous DNA and infect a broad range of human cell lines. Upon infection the viral genome can persist by virtue of episomal maintenance and stably maintains heterologous gene expression. Here we report an evaluation of the in vivo properties of HVS, with a view to its development as a gene delivery system. We demonstrate for the first time, the long-term persistence of the HVS genome in tumour xenografts generated from HVS-infected human carcinoma cell lines. The HVS-based vector remained latent in the xenograft without spreading to other organs. Moreover, the long-term in vivo maintenance of the HVS genome, as a nonintegrated circular episome, provided efficient sustained expression of a heterologous transgene. These in vivo results suggest that HVS-based vectors have potential for gene therapy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kurian KM, Watson CJ, Wyllie AH . Retroviral vectors Mol Pathol 2000 53: 173–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Naviaux RK, Verma IM . Retroviral vectors for persistent expression in vivo Curr Opin Biotech 1992 3: 540–547

    Article  CAS  PubMed  Google Scholar 

  3. Hitt MM, Graham FL . Adenovirus vectors for human gene therapy Adv Virus Res 2000 55: 479–505

    Article  CAS  PubMed  Google Scholar 

  4. Young LS, Mautner V . The promise and potential hazards of adenovirus gene therapy Gut 2001 5: 733–736

    Article  Google Scholar 

  5. Monahan PE, Samulski RJ . Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 2000 6: 433–440

    Article  CAS  PubMed  Google Scholar 

  6. Roizman B et al. Herpesviridae. Definition, provisional nomenclature, and taxonomy. The Herpesvirus Study Group, the International Committee on Taxonomy of Viruses Intervirology 1981 16: 201–217

    Article  CAS  PubMed  Google Scholar 

  7. Coffin RS, Latchman DS . Herpes simplex virus-based vectors Latchman DS (eds); Genetic Manipulation of the Nervous System Academic Press 1996 99–111

  8. Glorioso JC, DeLuca NA, Fink DJ . Development and application of herpes simplex virus vectors for human gene therapy Ann Rev Microbiol 1995 49: 675–710

    Article  CAS  Google Scholar 

  9. Krisky DM et al. Deletion of multiple immediate–early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons Gene Therapy 1998 5: 1593–1603

    Article  CAS  PubMed  Google Scholar 

  10. Samaniego LA, Neiderhiser L, DeLuca NA . Persistence and expression of the herpes simplex virus genome in the absence of immediate–early proteins J Virol 1998 72: 3307–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lachmann RH, Efstathiou S . Gene transfer with herpes simplex vectors Curr Opin Mol Ther 1999 1: 622–632

    CAS  PubMed  Google Scholar 

  12. Arthur JL et al. Herpes simplex virus type 1 promoter activity during latency establishment, maintenance and reactivation in primary dorsal root neurons in vitro J Virol 2001 75: 3885–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spaete RR, Frenkel N . The herpes simplex virus amplicon: a new eukaryotic defective-virus-cloning-amplifying vector Cell 1982 30: 295–304

    Article  CAS  PubMed  Google Scholar 

  14. Geller AI, Breakefield XO . A defective HSV-1 vector expresses Escherichia coli β-galactosidase in cultured peripheral neurons Science 1988 241: 1667–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geller AI, Freese A . Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector resulting in stable expression of Escherichia coli β-galactosidase Proc Natl Acad Sci USA 1990 87: 1149–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fraefel C, Jacoby DR, Breakefield XO . Herpes simplex virus type 1-based amplicon vector systems Adv Virus Res 2000 55: 425–451

    Article  CAS  PubMed  Google Scholar 

  17. Fraefel C, Jacoby DR, Breakefield XO . Herpes simplex virus type 1-based amplicon vector systems

  18. Yates J, Warren N, Sugden B . Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells Nature 1985 313: 812–815

    Article  CAS  PubMed  Google Scholar 

  19. Fleckenstein B, Desrosiers RC . Herpesvirus saimiri and herpesvirus ateles Roizman B (eds); The Herpes Viruses, vol. 1 Plenum Press 1982 253–332

  20. Desrosiers RC et al. A region of the Herpesvirus saimiri genome required for oncogenicity Science 1995 228: 184–187

    Article  Google Scholar 

  21. Grassmann R, Fleckenstein B . Selectable recombinant herpesvirus saimiri is capable of persisting in a human cell line J Virol 1989 63: 1818–1821

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Simmer B et al. Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines J Gen Virol 1991 72: 1953–1958

    Article  PubMed  Google Scholar 

  23. Stevenson AJ et al. Assessment of Herpesvirus saimiri as a potential human gene therapy vector J Med Virol 1999 57: 269–277

    Article  CAS  PubMed  Google Scholar 

  24. Hall KT et al. Analysis of gene expression in a human cell line stably transduced with Herpesvirus saimiri J Virol 2000 74: 7331–7337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Whitehouse A, Stevenson AJ . Gene regulation in Herpesvirus saimiri and its implication towards the development of a novel gene therapy vector Gene Ther Mol Biol 1999 3: 35–44

    Google Scholar 

  26. Stevenson AJ et al. A Herpesvirus saimiri-based gene therapy vector with potential for use in cancer immunotherapy Cancer Gene Ther 2000 7: 1077–1085

    Article  CAS  PubMed  Google Scholar 

  27. Stevenson AJ et al. Herpesvirus saimiri-based gene therapy vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro Gene Therapy 2000 7: 464–471

    Article  CAS  PubMed  Google Scholar 

  28. Goodwin DJ et al. The ORF 57 gene product of Herpesvirus saimiri shuttles between the nucleus and cytoplasm and is involved in viral RNA nuclear export J Virol 1999 73: 10519–10524

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Goodwin DJ, Whitehouse A . A γ-2 herpesvirus nucleocytoplasmic shuttle protein interacts with importin α-1 and importin α-5 J Biol Chem 2001 276: 19905–19912

    Article  CAS  PubMed  Google Scholar 

  30. Gardella T, Medveczky P, Sairenji T, Mulder C . Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis J Virol 1984 50: 248–254

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Decker LL, Klaman LD, Thorley-Lawson DA . Detection of the latent form of Epstein-Barr virus DNA in the peripheral blood of healthy individuals J Virol 1986 70: 3286–3289

    Google Scholar 

  32. Hiller C, Wittmann S, Slavin S, Fickenscher H . Functional long-term thymidine kinase suicide gene expression in human T cells using a herpesvirus saimiri vector Gene Therapy 2000 7: 664–674

    Article  CAS  PubMed  Google Scholar 

  33. Knappe A et al. The interleukin-17 gene of herpesvirus saimiri J Virol 1998 72: 5797–5801

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hall KT et al. Characterisation of the Herpesvirus saimiri ORF 73 gene product J Gen Virol 2000 81: 2653–2658

    Article  CAS  PubMed  Google Scholar 

  35. Whitehouse A, Cooper M, Hall KT, Meredith DM . The ORF 50a gene product regulates ORF 57 gene expression in Herpesvirus saimiri J Virol 1998 72: 1967–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wohlgemuth JG et al. Long-term gene expression from autonomously replicating vectors in mammalian cells Gene Therapy 1996 6: 503–512

    Google Scholar 

  37. Lupton S, Levine AJ . Mapping of genetic elements of Epstein–Barr virus that facilitate extrachromosomal persistence of Epstein–Barr virus-derived plasmids in human cells Mol Cell Biol 1985 5: 2533–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harris A, Young DB, Griffin BE . Random association of Epstein–Barr virus genomes with host cell metaphase chromosomes in Burkitt's lymphoma-derived cell lines J Virol 1985 56: 328–332

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ballestas ME, Kaye KM . Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA J Virol 2001 75: 3250–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kelleher ZT et al. Epstein–Barr-based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells Nat Biotech 1998 16: 762–768

    Article  CAS  Google Scholar 

  41. Wade-Martins R et al. Stable correction of a genetic deficiency in human cells by an episome carrying a 115 Kb genomic transgene Nat Biotech 2000 18: 1311–1314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Helmut Fickenscher (University of Erlangen, Germany) for the HVS-transformed B133 cell line; Olusola Faluyi and Konstantina Grosios (Molecular Medicine Unit, Leeds, UK) for assistance with sectioning and immunohistochemistry analysis, respectively. This work was supported in parts by grants to AW from Medical Research Council, Candlelighter's Trust, Yorkshire Cancer Research and Association of International Cancer Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, P., Coletta, P., Markham, A. et al. In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector. Gene Ther 8, 1762–1769 (2001). https://doi.org/10.1038/sj.gt.3301595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301595

Keywords

This article is cited by

Search

Quick links