Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Replication-defective recombinant Semliki Forest virus encoding GM-CSF as a vector system for rapid and facile generation of autologous human tumor cell vaccines

Abstract

This paper describes the production of recombinant Semliki Forest virus encoding murine or human granulocyte–macrophage colony-stimulating factor (GM-CSF) and the capacity of these vectors to transduce murine and human tumor cells ex vivo. High-titer stocks (up to 3 × 109 particles/ml) of conditionally infective, replication-defective, recombinant SFV particles were generated using the SFV Helper-2 system. It is shown that the recombinant SFV/GM-CSF virus, as well as recombinant SFV carrying the β-galactosidase reporter gene, efficiently transduce both murine tumor cell lines as well as primary human renal carcinoma cells. Using ELISA's specific for GM-CSF, levels of GM-CSF production by the cells were determined. Levels of murine GM-CSF (mGM-CSF) produced by SFV/mGM-CSF transduced renal cell cancer cultures were equal to or higher than corresponding levels reported in the literature after transduction of similar renal carcinoma cell cultures using a retroviral vector system. The biological activity of GM-CSF was demonstrated by using cells which are dependent on GM-CSF for growth and by using primary bone marrow cells. All the transduced cell cultures (including the human renal cell carcinoma samples) produced GM-CSF for up to at least 4 days after transduction. The results imply that the recombinant SFV system can be used for rapid and facile preparation of autologous cancer cell vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Simons JW et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte–macrophage colony-stimulating factor gene transfer Cancer Res 1997 57: 1537–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abdel-Wahab Z et al. A phase I clinical trial of immunotherapy with interferon-gamma gene modified autologous melanoma cells: monitoring the humoral immune response Cancer 1997 80: 401–412

    Article  CAS  PubMed  Google Scholar 

  3. Lotze MT et al. Cytokine gene therapy of cancer using interleukin-12: murine and clinical trials Ann NY Acad Sci 1996 795: 440–454

    Article  CAS  PubMed  Google Scholar 

  4. Soiffer R et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma Proc Natl Acad Sci USA 1998 95: 13141–13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang AE et al. Immunogenetic therapy of human melanoma utilizing autologous tumor cells transduced to secrete granulocyte–macrophage colony-stimulating factor Hum Gene Ther 2000 11: 839–850

    Article  CAS  PubMed  Google Scholar 

  6. Mastrangelo MJ et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma Cancer Gene Ther 1999 6: 409–422

    Article  CAS  PubMed  Google Scholar 

  7. Dranoff G et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity Proc Natl Acad Sci USA 1993 90: 3539–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaffee EM et al. High efficiency gene transfer into primary human tumor explants without cell selection Cancer Res 1993 53: 2221–2226

    CAS  PubMed  Google Scholar 

  9. Sampson JH et al. Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8(+) cell-mediated immunity against tumors located in the ‘immunologically privileged’ central nervous system Proc Natl Acad Sci USA 1996 93: 10399–10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu JS, Burwick JA, Dranoff G, Breakafield XO . Gene therapy for metastatic brain tumors by vaccination with granulocyte–macrophage colony-stimulating factor-transduced tumor cells Hum Gene Ther 1997 8: 1065–1072

    Article  CAS  PubMed  Google Scholar 

  11. Simons JW et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor using ex vivo gene transfer Cancer Res 1999 59: 5160–5168

    CAS  PubMed  Google Scholar 

  12. Abe J et al. Antitumor effect induced by granulocyte/macrophage colony-stimulating factor gene-modified tumor vaccination: comparison of adenovirus- and retrovirus-mediated genetic transduction J Cancer Res Clin Oncol 1995 121: 587–592

    Article  CAS  PubMed  Google Scholar 

  13. Chen SH et al. Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival Cancer Res 1996 56: 3758–3762

    CAS  PubMed  Google Scholar 

  14. Qin HX, Chatterjee SK . Construction of recombinant vaccinia virus expressing GM-CSF and its use as tumor vaccine Gene Therapy 1996 3: 59–66

    CAS  PubMed  Google Scholar 

  15. Berglund P et al. Semliki Forest virus expression system: production of conditionally infectious recombinant particles Bio/Technology 1993 11: 916–920

    CAS  Google Scholar 

  16. Liljeström P, Garoff H . A new generation of animal cell expression vectors based on the Semliki Forest virus replicon Bio/Technology 1991 9: 1356–1361

    Article  Google Scholar 

  17. Sjöberg EM, Suomalainen M, Garoff H . A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene Bio/Technology 1994 12: 1127–1131

    Article  Google Scholar 

  18. Smerdou C, Liljeström P . Two-helper RNA system for production of recombinant Semliki Forest virus particles J Virol 1999 73: 1092–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Strauss JH, Strauss EG . The alphaviruses: gene expression, replication, and evolution Microbiol Rev 1994 58: 491–562

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Griffin DE, Hardwick JM . Regulators on the road to persistent alphavirus infection Ann Rev Microbiol 1997 51: 565–592

    Article  CAS  Google Scholar 

  21. Atkins GJ, Sheahan BJ, Liljestrom P . The molecular pathogenesis of Semliki Forest virus: a model virus made useful? J Gen Virol 1999 80: 2287–2297

    Article  CAS  PubMed  Google Scholar 

  22. Daemen T et al. Genetic immunization against cervical carcinoma:induction of cytotoxic T lymphocyte activity with a recombinant alphavirus vector expressing human papilomavirus type 16 E6 and E7 Gene Therapy 2000 7: 1859–1866

    Article  CAS  PubMed  Google Scholar 

  23. Zhou X et al. Generation of cytotoxic and humoral immune responses by non-replicative recombinant Semliki Forest virus Proc Natl Acad Sci USA 1995 92: 3009–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fleeton M, Liljestrom P, Sheahan B, Atkins G . Recombinant Semliki Forest virus particles expressing louping ill virus antigen induce better protective response than plasmid-based DNA vaccines or an inactivated whole particle vaccine J Gen Virol 2000 81: 749–758

    Article  CAS  PubMed  Google Scholar 

  25. Calmenero P, Liljestrom P, Jondal M . Induction of P815 tumor immunity by recombinant Semliki Forest virus expressing the P1A gene Gene Therapy 1999 6: 1728–1733

    Article  Google Scholar 

  26. Mossman SP et al. Protection against lethal simian immunodeficiency virus SIVsmmPBj14 disease by a recombinant Semliki Forest virus gp160 vaccine and by a gp120 subunit vaccine J Virol 1996 70: 1953–1960

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Berglund P et al. Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type I envelope protein and challenge with a high dose of SHIV-4 virus Aids Res Hum Retrovir 1997 13: 1487–1495

    Article  CAS  PubMed  Google Scholar 

  28. Klimp AH et al. Effect of intraperitoneally administered recombinant murine granulocyte–macrophage colony-stimulating factor (rmGM-CSF) on the cytotoxic potential of murine peritoneal cells Br J Cancer 1999 79: 89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klimp AH et al. Activation of peritoneal cells upon in vivo transfection with a recombinant alphavirus expressing GM-CSF Gene Therapy 2001 8: 300–307

    Article  CAS  PubMed  Google Scholar 

  30. Keith WN, Brown R, Pragnell IB . Retrovirus mediated transfer and expression of GM-CSF in haematopoietic cells Br J Cancer 1990 62: 388–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dranoff G . Strategies for cancer gene therapy Cancer Chemother Biol Respone Modif 1997 17: 328–348

    CAS  Google Scholar 

  32. Dranoff G . Interpreting cancer vaccine clinical trials J Gene Med 1999 1: 80–83

    Article  CAS  PubMed  Google Scholar 

  33. Jaffee EM . Immunotherapy of cancer Ann NY Acad Sci 1999 886: 67–72

    Article  CAS  PubMed  Google Scholar 

  34. Van Tendeloo VF, Van Broeckhoven C, Berneman ZN . Gene-based cancer vaccines: an ex vivo approach Leukemia 2001 15: 545–558

    Article  CAS  PubMed  Google Scholar 

  35. Esche C, Shurin MR, Lotze MT . The use of dendritic cells for cancer vaccination Curr Opin Mol Ther 1999 1: 72–81

    CAS  PubMed  Google Scholar 

  36. Parmiani G, Rodolfo M, Melani C . Immunological gene therapy with ex vivo gene-modified tumor cells: a critique and a reappraisal Hum Gene Ther 2000 11: 1269–1275

    Article  CAS  PubMed  Google Scholar 

  37. Berns AJ et al. Phase I study of non-replicating autologous tumor cell injections using cells prepared with or without GM-CSF gene transduction in patients with metastatic renal cell carcinoma Hum Gene Ther 1995 6: 347–368

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J et al. Cloning of human IL-12 p40 and p35 DNA into the Semliki Forest virus vector: expression of IL-12 in human tumor cells Gene Therapy 1997 4: 367–374

    Article  CAS  PubMed  Google Scholar 

  39. Asselin-Paturel C et al. Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography Gene Therapy 1999 6: 606–615

    Article  CAS  PubMed  Google Scholar 

  40. Berglund P et al. Enhancing immune responses using suicidal DNA vaccines Nat Biotechnol 1998 16: 562–565

    Article  CAS  PubMed  Google Scholar 

  41. Glasgow GM, McGee MM, Sheahan BJ, Atkins GJ . Death mechanisms in cultured cells infected by Semliki Forest virus J Gen Virol 1997 78: 1559–1563

    Article  CAS  PubMed  Google Scholar 

  42. Ying H et al. Cancer therapy using a self-replicating RNA vaccine Nat Med 1999 5: 823–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leitner WW et al. Enhancement of tumor-specific immune response with plasmid DNA replicon vectors Cancer Res 2000 60: 51–55

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Restifo NP, Ying H, Hwang L, Leitner WW . The promise of nucleic acid vaccines Gene Therapy 2000 7: 89–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morris-Downes MM et al. Semliki Forest virus-based vaccines: persistence, distribution and pathological analysis in two animal systems Vaccine 2001 19: 1978–1988

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt W et al. Cancer vaccines: the interleukin 2 dosage effect Proc Natl Acad Sci USA 1995 92: 4711–4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bonnekoh B et al. Ex vivo and in vivo adenovirus-mediated gene therapy strategies induce a systemic anti-tumor immune defence in the B16 melanoma model J Invest Dermatol 1998 110: 867–871

    Article  CAS  PubMed  Google Scholar 

  48. Meanger J, Peroulis I, Mills J . Modified Semliki Forest virus expression vector that facilitates cloning BioTechniques 1997 23: 432–436

    Article  CAS  PubMed  Google Scholar 

  49. Peacock JH et al. Initial DNA damage or repair as the major determinant of cellular radiosensitivity? Int J Radiat Biol 1989 56: 543–547

    Article  CAS  PubMed  Google Scholar 

  50. Altman SW, Johnson GD, Prystowsky MB . Single proline substitutions in predicted α-helices of murine granulocyte–macrophage colony-stimulating factor result in a loss in bioactivity and altered glycosylation J Biol Chem 1991 266: 5333–5341

    Google Scholar 

  51. Shanafelt AB, Miyajima A, Kitamura T, Kastelein RA . The amino-terminal helix of GM-CSF and IL-5 governs high affinity binding to their receptors EMBO J 1991 10: 4105–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Durkin JP et al. The identification and characterization of a novel human differentiation-inhibiting protein that selectively blocks erythroid differentiation Blood 1992 5: 1161–1171

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank P Liljeström and P Berglund for expert advice and valuable suggestions. In addition, we thank A Heikema, R Timmer, M Esselink and J Bijzet for their assistance with cloning, preparation of SFV batches and performing ELISAs. This work was funded by a grant from the Dutch Cancer Foundation (NKB/KWF).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Withoff, S., Glazenburg, K., van Veen, M. et al. Replication-defective recombinant Semliki Forest virus encoding GM-CSF as a vector system for rapid and facile generation of autologous human tumor cell vaccines. Gene Ther 8, 1515–1523 (2001). https://doi.org/10.1038/sj.gt.3301556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301556

Keywords

This article is cited by

Search

Quick links