Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Prediction and optimization of gene transfection and drug delivery by electroporation

Abstract

Although electroporation is widely used for laboratory gene transfection and gaining increased importance for nonviral gene therapy, it is generally employed using trial-and-error optimization schemes for lack of methods to predict electroporation's effects on cells. Therefore, we used a statistical approach to quantitatively predict molecular uptake and cell viability following electroporation and show that it predicts both in vitro and in vivo results for a wide range of molecules, including DNA, in 60 different cell types. Mechanistically, this broad predictive ability suggests that electroporation is mediated primarily by lipid bilayer structure and only secondarily by cell-specific characteristics. For gene therapy applications, this approach should facilitate rational design of electroporation protocols. Gene Therapy (2001) 8, 1464–1469.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) . Guide to Electroporation and Electrofusion Academic Press: New York 1992

    Google Scholar 

  2. Nickoloff JA (ed . ). Animal Cell Electroporation and Electrofusion Protocols Humana Press: Totowa, NJ 1995

    Google Scholar 

  3. Nickoloff JA (ed . ). Plant Cell Electroporation and ElectrofusionProtocols Humana Press: Totowa, NJ 1995

    Book  Google Scholar 

  4. Nickoloff JA (ed . ). Electroporation Protocols for Microorganisms Humana Press: Totowa, NJ 1995

    Book  Google Scholar 

  5. Lynch PT, Davey MR (ed . ). Electrical Manipulation of Cells Chapman and Hall: New York 1996

    Book  Google Scholar 

  6. Heller R, Gilbert R, Jaroszeski MJ . Clinical applications of electrochemotherapy Adv Drug Deliv Rev 1999 35: 119–129

    Article  CAS  Google Scholar 

  7. Jaroszeski MJ, Gilbert R, Nicolau C, Heller R . In vivo gene delivery by electroporation Adv Drug Deliv Rev 1999 35: 131–138

    Article  CAS  Google Scholar 

  8. Jaroszeski MJ, Heller R, Gilbert R (eds) . Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery Humana Press: Totowa, NJ 2000

    Book  Google Scholar 

  9. Prausnitz MR . A practical assessment of transdermal drug delivery by skin electroporation Adv Drug Deliv Rev 1999 35: 61–76

    Article  CAS  Google Scholar 

  10. Canatella PJ, Karr JF, Petros JA, Prausnitz MR . Quantitative study of electroporation-mediated molecular uptake and cell viability Biophys J 2001 80: 755–764

    Article  CAS  Google Scholar 

  11. Prausnitz MR et al. A quantitative study of electroporation showing a plateau in net molecular transport Biophys J 1993 65: 414–422

    Article  CAS  Google Scholar 

  12. Prausnitz MR et al. Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts Biophys J 1994 66: 1522–1530

    Article  CAS  Google Scholar 

  13. Gift EA, Weaver JC . Observation of extremely heterogeneous electroporative molecular uptake by Saccharomyces cervisiae which changes with electric field pulse amplitude Biochim Biophys Acta 1995 1234: 52–62

    Article  Google Scholar 

  14. Chizmadzhev YA, Zarnytsin VG, Weaver JC, Potts RO . Mechanism of electroinduced ionic species transport though a multilamellar lipid system Biophys J 1995 68: 749–765

    Article  CAS  Google Scholar 

  15. Weaver JC, Chizmadzhev YA . Theory of electroporation: a review Bioelectrochem Bioenerg 1996 41: 135–160

    Article  CAS  Google Scholar 

  16. Hogg VG, Ledolter J . Applied Statistics for Engineers and Physical Scientists Macmillan: New York 1992

    Google Scholar 

  17. Chu G, Hayakawa H, Berg P . Electroporation for the efficient transfection of mammalian cells with DNA Nucleic Acids Res 1987 15: 1311–1326

    Article  CAS  Google Scholar 

  18. Knutson JC, Yee D . Electroporation: parameters affecting transfer of DNA into mammalian cells Anal Biochem 1987 164: 44–52

    Article  CAS  Google Scholar 

  19. Stopper H, Jones H, Zimmermann U . Large scale transfection of mouse L-cells by electropermeabilization Biochim Biophys Acta 1987 900: 38–44

    Article  CAS  Google Scholar 

  20. Cann AJ, Koyanagi Y, Chen ISY . High efficiency transfection of primary human lymphocytes and studies of gene expression Oncogene 1988 3: 123–128

    CAS  Google Scholar 

  21. McNally MA, Lebkowski JS, Okarma TB, Lerch LB . Optimizing electroporation parameters for a variety of hematopoietic cell lines Biotechniques 1988 6: 882–886

    CAS  PubMed  Google Scholar 

  22. Shigekawa K, Dower WJ . Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells Biotechniques 1988 6: 742–751

    CAS  PubMed  Google Scholar 

  23. Andreason GL, Evans GA . Optimization of electroporation for transfection of mammalian cell lines Anal Biochem 1989 180: 269–275

    Article  CAS  Google Scholar 

  24. Anderson MLM, Spandidos DA, Coggins JR . Electroporation of lymphoid cells: factors affecting the efficiency of transfection J Biochem Biophys Meth 1991 22: 207–222

    Article  CAS  Google Scholar 

  25. Takahashi M et al. Gene transfer into human leukemia cell lines by electroporation: experience with exponentially decaying and square wave pulse Leukemia Res 1991 15: 507–513

    Article  CAS  Google Scholar 

  26. Baum C, Forster P, Hegewisch-Becker S, Harbers K . An optimized electroporation protocol applicable to a wide range of cell lines Biotechniques 1994 17: 1058–1062

    CAS  Google Scholar 

  27. Kotnis RA et al. Optimisation of gene transfer into vascular endothelial cells using electroporation Eur J Vasc Endovasc Surg 1995 9: 71–79

    Article  CAS  Google Scholar 

  28. Canatella P . Control and Optimization of Electroporation-Mediated Drug and Gene Delivery PhD thesis, Georgia Institute of Technology: Atlanta, GA 2000

    Google Scholar 

  29. Bazile D, Mir LM, Paoletti C . Voltage-dependent introduction of a d[α]octothymidylate into electropermeabilized cells Biochem Biophys Res Com 1989 159: 633–639

    Article  CAS  Google Scholar 

  30. Okamoto H et al. Optimization of electroporation for transfection of human fibroblast cell lines with origin-defective SV40 DNA: development of human transformed fibroblast cell lines with mucopolysaccharidoses (I-VII) Cell Struct Funct 1992 17: 123–128

    Article  CAS  Google Scholar 

  31. Brüggemann U, Roux EC, Hannig J, Nicolau C . Low-oxygen-affinity red cells produced in large-volume, continuous-slow electroporation system Transfusion 1995 35: 478–486

    Article  Google Scholar 

  32. Rols MP, Femenia P, Teissie J . Long-lived macropinocytosis takes place in electropermeabilized mammalian cells Biochem Biophys Res Com 1995 208: 26–35

    Article  CAS  Google Scholar 

  33. Sukhorukov VL et al. Electropermeabilization and fluorescent tracer exchange: the role of whole-cell capacitance Cytometry 1995 21: 230–240

    Article  CAS  Google Scholar 

  34. Cemazar M et al. Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro Electro Magnetobiol 1998 17: 263–270

    Article  Google Scholar 

  35. Golzio M et al. Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells Biophys J 1998 74: 3015–3022

    Article  CAS  Google Scholar 

  36. Lebar AM . Significance of treatment energy in cell electropermeabilization Electro Magnetobiol 1998 17: 255–262

    Article  Google Scholar 

  37. Neumann E et al. Mechanism of electroporative dye uptake by mouse B cells Biophys J 1998 74: 98–108

    Article  CAS  Google Scholar 

  38. Rols M, Teissie J . Electropermeabilization of mammalian cells to macromolecules: control by pulse duration Biophys J 1998 75: 1415–1423

    Article  CAS  Google Scholar 

  39. Weaver JC et al. Electroporation: high frequency of occurrence of a transient high-permeability state in erythrocytes and intact yeast FEBS Lett 1998 229: 30–34

    Article  Google Scholar 

  40. Xie TD, Sun L, Tsong TY . Study of mechanisms of electric field-induced DNA transfection I: DNA entry by surface binding and diffusion through membrane pores Biophys J 1990 58: 13–19

    Article  CAS  Google Scholar 

  41. Mack K, Titball RW . Transformation of Burkholderia pseudomallei by electroporation Anal Biochem 1996 242: 73–76

    Article  CAS  Google Scholar 

  42. Jost BH, Billington SJ, Songer JG . Electroporation-mediated transformation of Arcanobacterium (Actinomyces) pyogenes Plasmid 1997 38: 135–140

    Article  CAS  Google Scholar 

  43. Kalscheuer R, Arenskötter M, Steinbüchel A . Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids) Appl Microbiol Biotechnol 1999 52: 508–515

    Article  CAS  Google Scholar 

  44. Heller R et al. In vivo gene electroinjection and expression in rat liver FEBS Lett 1996 389: 225–228

    Article  CAS  Google Scholar 

  45. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo Nature Biotech 1998 16: 867–870

    Article  CAS  Google Scholar 

  46. Rols M et al. In vivo electrically mediated protein and gene transfer in murine melanoma Nature Biotech 1998 16: 168–171

    Article  CAS  Google Scholar 

  47. Suzuki T et al. Direct gene transfer into rat liver cells by in vivo electroporation FEBS Lett 1998 425: 436–440

    Article  CAS  Google Scholar 

  48. Gehl J, Mir LM . Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization Biochem Biophys Res Commun 1999 261: 377–380

    Article  CAS  Google Scholar 

  49. Pliquett U, Gift EA, Weaver JC . Determination of the electric field and anomalous heating caused by exponential pulses with aluminum electrodes in electroporation experiments Bioelectrochem Bioenerg 1996 39: 39–53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Russell Heikes for help with statistical analysis and Derek Atkinson and Conor McKenna for technical assistance. This work was supported in part by a National Science Foundation CAREER award, the Emory/Georgia Tech Biomedical Technology Research Center, Cyto Pulse Sciences, Inc. and the Dow Minority Research Program.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canatella, P., Prausnitz, M. Prediction and optimization of gene transfection and drug delivery by electroporation. Gene Ther 8, 1464–1469 (2001). https://doi.org/10.1038/sj.gt.3301547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301547

Keywords

This article is cited by

Search

Quick links