Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenoviral vector-mediated insulin gene transfer in the mouse pancreas corrects streptozotocin-induced hyperglycemia

Abstract

Therapy for type 1 diabetes consists of tight blood glucose (BG) control to minimize complications. Current treatment relies on multiple insulin injections or an insulin pump placement, β-cell or whole pancreas transplantation. All approaches have significant limitations and have led to the realization that novel treatment strategies are needed. Pancreatic acinar cells have features that make them a good target for insulin gene transfer. They are not subject to autoimmune attack, a problem with pancreas or islets transplantation, they are avidly transduced by recombinant adenoviral vectors, and capable of exporting a variety of peptides into the portal circulation. Recombinant adenoviral vectors were engineered to express either wild-type or furin-modified human insulin cDNA (AdCMVhInsM). Immunodeficient mice were made diabetic with streptozotocin and injected intrapancreatically with the vectors. BG and blood insulin levels have normalized after administration of AdCMVhInsM. Immunohistochemistry and electron microscopy showed the presence of insulin in acinar cells throughout the pancreas and localization of insulin molecules to acinar cell vesicles. The data clearly establish a relationship between intrapancreatic vector administration, decreased BG and elevated blood insulin levels. The findings support the use of pancreatic acinar cells to express and secrete insulin into the blood stream. Gene Therapy (2001) 8, 1480–1489.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Trial Research Group . The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus N Engl J Med 1993 329: 977–986

    Article  Google Scholar 

  2. American Diabetes Association: Clinical Practice Recommendations 2000 . Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus Diabetes Care 2000 23 (Suppl. 1): S1–S116

    Google Scholar 

  3. Screening for Diabetes Mellitus. Guide to Clinical Preventive Services, Second Edition: Screening Metabolic, Nutritional, and Environmental Disorders. U.S. Preventive Services Task Force(www.vnh.org/GCPS2/29.html)

  4. Secchi A et al. Islet transplantation in IDDM patients Diabetologia 1997 40: 225–231

    Article  CAS  PubMed  Google Scholar 

  5. Shapiro AM et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen N Engl J Med 2000 343: 230–238

    Article  CAS  PubMed  Google Scholar 

  6. Bloomgarden ZT . American Diabetes Association Annual Meeting, 1999. New approaches to insulin treatment and glucose monitoring Diabetes Care 1999 22: 2078–2082

    Article  CAS  PubMed  Google Scholar 

  7. Dafoe DC et al. No improvement of pancreas transplant endocrine function by exogenous insulin infusion (islet rest) in the postoperative period Transplantation 1989 48: 22–62

    Article  CAS  PubMed  Google Scholar 

  8. Levine F, Leibowitz G . Towards gene therapy of diabetes mellitus Mol Med Today 1999 5: 165–171

    Article  CAS  PubMed  Google Scholar 

  9. Matschinsky FM, Glaser B, Magnuson MA . Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities Diabetes 1998 47: 307–315

    Article  CAS  PubMed  Google Scholar 

  10. Lee HC et al. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue Nature 2000 408: 483–488

    Article  CAS  PubMed  Google Scholar 

  11. Kaufmann JE, Irminger JC, Halban PA . Sequence requirements for proinsulin processing at the B-chain/C-peptide junction Biochem J 1995 310: 869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seidah NG, Chretien M . Eukaryotic protein processing: endoproteolysis of precursor proteins Curr Opin Biotechnol 1997 8: 602–607

    Article  CAS  PubMed  Google Scholar 

  13. Kaufmann JE, Irminger JC, Mungall J, Halban PA . Proinsulin conversion in GH3 cells after coexpression of human proinsulin with the endoproteases PC2 and/or PC3 Diabetes 1997 46: 978–982

    Article  CAS  PubMed  Google Scholar 

  14. Steiner DF . The proprotein convertases Curr Opin Chem Biol 1998 2: 31–39

    Article  CAS  PubMed  Google Scholar 

  15. Ohagi S et al. Human prohormone convertase 3 gene: exon-intron organization and molecular scanning for mutations in Japanese subjects with NIDDM Diabetes 1996 45: 897–901

    Article  PubMed  Google Scholar 

  16. Steiner DF et al. The role of prohormone convertases in insulin biosynthesis: evidence for inherited defects in their action in man and experimental animals Diabetes Metab 1996 22: 94–104

    CAS  PubMed  Google Scholar 

  17. Dodson G, Steiner D . The role of assembly in insulin's biosynthesis Curr Opin Struct Biol 1998 8: 189–194

    Article  CAS  PubMed  Google Scholar 

  18. Short DK, Okada S, Yamauchi K, Pessin JE . Adenovirus-mediated transfer of a modified human proinsulin gene reverses hyperglycemia in diabetic mice Am J Physiol 1998 275: E748–E756

    Article  CAS  PubMed  Google Scholar 

  19. Nakayama K . Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins Biochem J 1997 327: 625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Groskreutz DJ, Sliwkowski MX, Gorman CM . Genetically engineered proinsulin constitutively processed and secreted as mature, active insulin J Biol Chem 1994 25: 6241–6245

    Google Scholar 

  21. Sures I, Goeddel DV, Gray A, Ullrich A . Nucleotide sequence of human preproinsulin complementary DNA Science 1980 208: 57–59

    Article  CAS  PubMed  Google Scholar 

  22. Vollenweider F, Kaufmann J, Irminger JC, Halban PA . Processing of proinsulin by furin, PC2, and PC3 in (co) transfected COS (monkey kidney) cells Diabetes 1995 44: 1075–1080

    Article  CAS  PubMed  Google Scholar 

  23. Efrat S . Prospects for gene therapy of insulin-dependent diabetes mellitus Diabetologia 1998 41: 1401–1490

    Article  CAS  PubMed  Google Scholar 

  24. Thule PM, Liu J, Phillips LS . Glucose regulated production of human insulin in rat hepatocytes Gene Therapy 2000 7: 205–214

    Article  CAS  PubMed  Google Scholar 

  25. Yamasaki K et al. Differentiation-induced insulin secretion from nonendocrine cells with engineered human proinsulin cDNA Biochem Biophys Res Commun 1999 265: 361–365

    Article  CAS  PubMed  Google Scholar 

  26. Kon OL et al. Naked plasmid-mediated gene transfer to skeletal muscle ameliorates diabetes mellitus J Gene Med 1999 1: 186–194

    Article  CAS  PubMed  Google Scholar 

  27. Mitanchez D et al. Regulated expression of mature human insulin in the liver of transgenic mice FEBS Lett 1998 421: 285–289

    Article  CAS  PubMed  Google Scholar 

  28. Kolodka TM, Finegold M, Moss L, Woo SL . Gene therapy for diabetes mellitus in rats by hepatic expression of insulin Proc Natl Acad Sci USA 1995 92: 3293–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldfine I et al. The endocrine secretion of human insulin and growth hormone by exocrine glands in the gastrointestinal tract Nat Biotechnol 1997 15: 1378–1382

    Article  CAS  PubMed  Google Scholar 

  30. Cheung AT et al. Glucose-dependent insulin release from genetically engineered K cells Science 2000 290: 1959–1962

    Article  CAS  PubMed  Google Scholar 

  31. Schmid R et al. Direct gene transfer into the rat pancreas using DNA-liposomes Eur J Clin Invest 1998 28: 220–226

    Article  CAS  PubMed  Google Scholar 

  32. Vickers S et al. Adenoviral vector infection of the human exocrine pancreas Arch Surg 1997 132: 1006–1009

    Article  CAS  PubMed  Google Scholar 

  33. DeMatteo R et al. Engineering tissue-specific expression of a recombinant adenovirus: selective transgene transcription in the pancreas using the amylase promoter J Surg Res 1997 72: 155–161

    Article  CAS  PubMed  Google Scholar 

  34. Raper S, DeMatteo R . Adenovirus-mediated in vivo gene transfer and expression in normal rat pancreas Pancreas 1996 12: 401–410

    Article  CAS  PubMed  Google Scholar 

  35. McClane S, Chirmule N, Burke C, Raper S . Characterization of the immune response after local delivery of recombinant adenovirus in murine pancreas and successful strategies for readministration Hum Gene Ther 1998 8: 2207–2216

    Article  Google Scholar 

  36. McClane S et al. Effect of adenoviral early genes and the host immune system on in vivo pancreatic gene transfer in the mouse Pancreas 1997 15: 236–245

    Article  CAS  PubMed  Google Scholar 

  37. McClane S, Hamilton T, Burke C, Raper S . Functional consequences of adenovirus-mediated murine pancreatic gene transfer Hum Gene Ther 1997 8: 739–746

    Article  CAS  PubMed  Google Scholar 

  38. McClane S, Hamilton T, Burke C, Raper S . Functional consequences of adenovirus-mediated murine pancreatic gene transfer Hum Gene Ther 1997 8: 739–746

    Article  CAS  PubMed  Google Scholar 

  39. Chan YM, Yu QC, Fine JD, Fuchs E . The genetic basis of Weber–Cockanyne epidermolysis bullosa simplex Proc Natl Acad Sci USA 1993 90: 3544–3548

    Article  Google Scholar 

  40. Yu QC, Allen E, Fuchs E . Desmosomal disorganization and epidermal abnormalities in transgenic mouse expressing mutant desmoglein-3 Proc Microsc Microanal 1996 4: 34–36

    Google Scholar 

  41. Bertera S et al. Immunology of type 1 diabetes. Intervention and prevention strategies Endocrinol Metab Clin North Am 1999 28: 841–864

    Article  CAS  PubMed  Google Scholar 

  42. Tisch R, McDevitt H . Insulin-dependent diabetes mellitus Cell 1996 85: 291–297

    Article  CAS  PubMed  Google Scholar 

  43. Yoon JW, Jun HS, Santamaria P . Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells Autoimmunity 1998 27: 109–122

    Article  CAS  PubMed  Google Scholar 

  44. Wong FS, Janeway CA Jr . Insulin-dependent diabetes mellitus and its animal models Curr Opin Immunol 1999 11: 643–647

    Article  CAS  PubMed  Google Scholar 

  45. Green EA, Flavell RA . The initiation of autoimmune diabetes Curr Opin Immunol 1999 11: 663–669

    Article  CAS  PubMed  Google Scholar 

  46. Iwahashi H et al. Molecular mechanisms of pancreatic beta-cell destruction in autoimmune diabetes: potential targets for preventive therapy Cytokin Cell Mol Ther 1998 4: 45–51

    CAS  Google Scholar 

  47. Levine F . Gene therapy for diabetes: strategies for beta-cell modification and replacement Diabetes Metab Rev 1997 13: 209–246

    Article  CAS  PubMed  Google Scholar 

  48. Gros L et al. Insulin production by engineered muscle cells Hum Gene Ther 1999 10: 1207–1217

    Article  CAS  PubMed  Google Scholar 

  49. Wanke IE, Wong NC . Specific problems facing gene therapy for insulin-dependent diabetes mellitus: glucose-regulated insulin secretion from hepatocytes Proc West Pharmacol Soc 1997 40: 131–133

    CAS  PubMed  Google Scholar 

  50. Sugiyama A et al. Defective adenoassociated viral-mediated transfection of insulin gene by direct injection into liver parenchyma decreases blood glucose of diabetic mice Horm Metab Res 1997 29: 599–603

    Article  CAS  PubMed  Google Scholar 

  51. Kuzume M et al. Insulin gene transfer can be a new optional therapy for replacement of pancreas Transplant Proc 1998 30: 3416

    Article  CAS  PubMed  Google Scholar 

  52. Auricchio A et al. Regulated insulin gene delivery for treatment of type 1 diabetes Mol Ther 2000 1: S293 (Abstr. 817)

    Google Scholar 

  53. Lipes MA et al. Insulin-secreting non-islet cells are resistant to autoimmune destruction Proc Natl Acad Sci USA 1996 93: 8595–8600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Docherty K . Gene therapy for diabetes mellitus Clin Sci (Colch) 1997 92: 321–330

    Article  CAS  Google Scholar 

  55. Ohtani O, Wang QX . Comparative analysis of insulo-acinar portal system in rats, guinea pigs, and dogs Microsc Res Tech 1997 37: 489–496

    Article  CAS  PubMed  Google Scholar 

  56. Abe H, Yamada N, Ishibashi S, Makuuchi M . Chronic inhibitory effect of insulin on plasma lipid concentrations in rats with transplanted pancreas Transplantation 2000 69: 2038–2042

    Article  CAS  PubMed  Google Scholar 

  57. Giannoukakis N, Rudert WA, Robbins PD, Trucco M . Targeting autoimmune diabetes with gene therapy Diabetes 1999 48: 2107–2121

    Article  CAS  PubMed  Google Scholar 

  58. Shifrin AL, Chirmule N, Chapman K, Raper SE . Innate immune response to adenoviral vector-mediated acute pancreatitis J Surg Res 2000 93: 359–360 (Abstr.)

    Google Scholar 

  59. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers J Virol 1998 72: 4212–4223

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Grodsky G . Kinetics of insulin secretion: current implications. In: LeRoith D, Taylor S, Olefsky J (eds) Diabetes Mellitus Lippincott-Raven: Philadelphia 1996 12–20

    Google Scholar 

  61. Kennedy G, German M . Insulin gene regulation. In: LeRoith D, Taylor S, Olefsky J (eds) Diabetes Mellitus Lippincott-Raven: Philadelphia 1996 20–26

    Google Scholar 

  62. Johnson J, Newgard C . The role of glucose transport and phosphorylation in glucose-stimulated insulin secretion. In: LeRoith D, Taylor S, Olefsky J Diabetes Mellitus Lippincott-Raven. Philadelphia 1996 pp 42–49

    Google Scholar 

  63. Rajas F et al. Induction of PEPCK gene expression in insulinopenia in rat small intestine Diabetes 2000 49: 1165–1168

    Article  CAS  PubMed  Google Scholar 

  64. Gros L et al. Regulated production of mature insulin by non-beta-cells Hum Gene Ther 1997 8: 2249–2259

    Article  CAS  PubMed  Google Scholar 

  65. Falqui L . Gene therapy for beta-cell functional replacement in IDDM J Pediatr Endocrinol Metab 1999 12 (Suppl. 3): 789–793

    Google Scholar 

  66. Newgard CB . Cellular engineering for the treatment of metabolic disorders: prospects for therapy in diabetes Biotechnology 1992 10: 1112–1120

    CAS  PubMed  Google Scholar 

  67. Newgard CB . Cellular engineering and gene therapy strategies for insulin replacement in diabetes Diabetes 1994 43: 341–350

    Article  CAS  PubMed  Google Scholar 

  68. Becker TC et al. Differential effects of overexpressed glucokinase and hexokinase I in isolated islets. Evidence for functional segregation of the high and low Km enzymes J Biol Chem 1996 271: 390–394

    Article  CAS  PubMed  Google Scholar 

  69. Maruyama Y, Peterson O . Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini Nature 1982 299: 159–161

    Article  CAS  PubMed  Google Scholar 

  70. Tsuchida T et al. Inhibition of stimulated amylase secretion by adenomedullin in rat pancreatic acini Endocrinology 1999 140: 865–870

    Article  CAS  PubMed  Google Scholar 

  71. Ohnishi H et al. Overexpression of Rab3D enhances regulated amylase secretion from pancreatic acini of transgenic mice J Clin Invest 1997 100: 3044–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ueda N et al. Kinesin is involved in regulation of rat pancreatic amylase secretion Gastroenterology 2000 199: 1123–1131

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH RO1 DK 54207 (SER) NIH DK 47707 (JMW) and the Juvenile Diabetes Research Foundation. Alberto Auricchio is a recipient of a fellowship (371/B) from Telethon Italia. Technical assistance and advice were provided by the Vector Core and Morphology Core of the Institute for Human Gene Therapy and the RIA core, Diabetes Research Center of the University of Pennsylvania.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shifrin, A., Auricchio, A., Yu, QC. et al. Adenoviral vector-mediated insulin gene transfer in the mouse pancreas corrects streptozotocin-induced hyperglycemia. Gene Ther 8, 1480–1489 (2001). https://doi.org/10.1038/sj.gt.3301544

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301544

Keywords

This article is cited by

Search

Quick links