Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase – increased expression with reduced muscle damage

Abstract

The efficiency of plasmid gene transfer to skeletal muscle can be significantly improved by the application of an electrical field to the muscle following injection of plasmid DNA. However, this electrotransfer is associated with significant muscle damage which may result in substantial loss of transfected muscle fibres. Reduction of the voltage used in the technique can result in a decrease in muscle damage, with a concomitant reduction in expression, but without a significant decrease in the number of transfected fibres. Pre-treatment of the muscle with a solution of bovine hyaluronidase greatly increases the efficiency of plasmid gene transfer when used in conjunction with electrotransfer, but not when used alone. This combination treatment results in greatly enhanced levels of transfected muscle fibres without the increases in muscle damage associated with the electrotransfer process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wolff JA et al. Direct gene transfer into mouse muscle in vivo Science 1990 247: 1465–1468

    Article  CAS  PubMed  Google Scholar 

  2. Acsadi G et al. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs Nature 1991 352: 815–818

    Article  CAS  PubMed  Google Scholar 

  3. Wells DJ, Goldspink G . Age and sex influence expression of plasmid DNA directly injected into mouse skeletal muscle FEBS Lett 1992 306: 203–205

    Article  CAS  PubMed  Google Scholar 

  4. Davis HL, Whalen RG, Demeneix BA . Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression Hum Gene Therapy 1993 4: 151–159

    Article  Google Scholar 

  5. Manthorpe M et al. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice Hum Gene Therapy 1993 4: 419–431

    Article  CAS  Google Scholar 

  6. Levy MY et al. Characterization of plasmid DNA transfer into mouse skeletal muscle: evaluation of uptake mechanism, expression and secretion of gene products into blood GeneTherapy 1996 3: 201–211

    CAS  Google Scholar 

  7. Wells DJ et al. Evaluation of plasmid DNA for in vivo gene therapy: factors affecting the number of transfected fibers J Pharm Sci 1998 87: 763–768

    Article  CAS  PubMed  Google Scholar 

  8. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo Nat Biotechnol 1998 16: 867–870

    Article  CAS  PubMed  Google Scholar 

  9. Mir LM et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses Proc Natl Acad Sci USA 1999 96: 4262–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mathiesen I . Electropermeabilization of skeletal muscle enhances gene transfer in vivo Gene Therapy 1999 6: 508–514

    Article  CAS  PubMed  Google Scholar 

  11. Bettan M et al. Efficient DNA electrotransfer into tumors Bioelectrochemistry 2000 52: 83–90

    Article  CAS  PubMed  Google Scholar 

  12. Somiari S et al. Theory and in vivo application of electroporative gene delivery Mol Therapy 2000 2: 178–187

    Article  CAS  Google Scholar 

  13. Kreiss P et al. Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer J Gene Med 1999 1: 245–250

    Article  CAS  PubMed  Google Scholar 

  14. Rizzuto G et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation Proc Natl Acad Sci USA 1999 96: 6417–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rizzuto G et al. Gene electrotransfer results in a high-level transduction of rat skeletal muscle and corrects anemia of renal failure Hum Gene Therapy 2000 11: 1891–1900

    Article  CAS  Google Scholar 

  16. Danko I et al. High expression of naked plasmid DNA in muscles of young rodents Hum Mol Genet 1997 6: 1435–1443

    Article  CAS  PubMed  Google Scholar 

  17. Jiao S et al. Direct gene transfer into nonhuman primate myofibers in vivo Hum Gene Ther 1992 3: 21–33

    Article  CAS  PubMed  Google Scholar 

  18. Wells DJ . Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle FEBS Lett 1993 332: 179–182

    Article  CAS  PubMed  Google Scholar 

  19. Davis HL et al. Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle Hum Gene Therapy 1993 4: 733–740

    Article  CAS  Google Scholar 

  20. Vitadello M et al. Gene transfer in regenerating muscle Hum Gene Therapy 1994 5: 11–18

    Article  CAS  Google Scholar 

  21. Danko I et al. Pharmacological enhancement of in vivo foreign gene expression in muscle Gene Therapy 1994 1: 114–121

    CAS  PubMed  Google Scholar 

  22. Budker V et al. The efficient expression of intravascularly delivered DNA in rat muscle Gene Therapy 1998 5: 272–276

    Article  CAS  PubMed  Google Scholar 

  23. Lew D et al. Cancer gene therapy using plasmid DNA: pharmacokinetic study of DNA following injection in mice Hum Gene Ther 1995 6: 553–564

    Article  CAS  PubMed  Google Scholar 

  24. Kawabata K, Takakura Y, Hashida M . The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake Pharm Res 1995 12: 825–830

    Article  CAS  PubMed  Google Scholar 

  25. Dubensky TW, Campbell BA, Villarreal LP . Direct transfection of viral and plasmid DNA into the liver or spleen of mice Proc Natl Acad Sci USA 1984 81: 7529–7533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Favre D et al. Hyaluronidase enhances recombinant adeno-associated virus (rAAV)-mediated gene transfer in the rat skeletal muscle Gene Therapy 2000 7: 1417–1420

    Article  CAS  PubMed  Google Scholar 

  27. Clemens PR et al. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes Gene Therapy 1996 3: 965–972

    CAS  PubMed  Google Scholar 

  28. Vincent N et al. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene Nat Genet 1993 5: 130–134

    Article  CAS  PubMed  Google Scholar 

  29. Fassati A et al. Efficiency of in vivo gene transfer using murine retroviral vectors is strain-dependent in mice Hum Gene Ther 1995 6: 1177–1183

    Article  CAS  PubMed  Google Scholar 

  30. Fassati A et al. Transplantation of retroviral producer cells for in vivo gene transfer into mouse skeletal muscle Hum Gene Ther 1996 7: 595–602

    Article  CAS  PubMed  Google Scholar 

  31. Fisher KJ et al. Recombinant adeno-associated virus for muscle directed gene therapy Nat Med 1997 3: 306–312

    Article  CAS  PubMed  Google Scholar 

  32. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector J Virol 1996 70: 8098–8108

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Halbert CL et al. Successful readministration of adeno-associated virus vectors to the mouse lung requires transient immunosuppression during the initial exposure J Virol 1998 72: 9795–9805

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jooss K, Turka LA, Wilson JM . Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig Gene Therapy 1998 5: 309–319

    Article  CAS  PubMed  Google Scholar 

  35. Middaugh CR et al. Analysis of plasmid DNA from a pharmaceutical perspective J Pharm Sci 1998 87: 130–146

    Article  CAS  PubMed  Google Scholar 

  36. Maule JG . PhD thesis. University of London 1999

  37. Fromes Y et al. Gene delivery to the myocardium by intrapericardial injection Gene Therapy 1999 6: 683–688

    Article  CAS  PubMed  Google Scholar 

  38. Madry H, Trippel SB . Efficient lipid-mediated gene transfer to articular chondrocytes Gene Therapy 2000 7: 286–291

    Article  CAS  PubMed  Google Scholar 

  39. Banta C . Hyaluronidase Neonatal Netw 1992 11: 103–105

    CAS  PubMed  Google Scholar 

  40. Evora PR et al. Exogenous hyaluronidase induces release of nitric oxide from the coronary endothelium J Thorac Cardiovasc Surg 2000 120: 707–711

    Article  CAS  PubMed  Google Scholar 

  41. Johnsson C, Hallgren R, Tufveson G . Hyaluronidase can be used to reduce interstitial edema in the presence of heparin J Cardiovasc Pharmacol Ther 2000 5: 229–236

    Article  CAS  PubMed  Google Scholar 

  42. McMahon JM et al. Inflammatory responses following direct injection of plasmid DNA into skeletal muscle Gene Therapy 1998 5: 1283–1290

    Article  CAS  PubMed  Google Scholar 

  43. Hemmi H et al. A Toll-like receptor recognizes bacterial DNA Nature 2000 408: 740–745

    Article  CAS  PubMed  Google Scholar 

  44. Krieg AM et al. CpG motifs in bacterial DNA trigger direct B-cell activation Nature 1995 374: 546–549

    Article  CAS  PubMed  Google Scholar 

  45. Hacker H et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation EMBO J 1998 17: 6230–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yi AK, Krieg AM . Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA J Immunol 1998 161: 4493–4497

    CAS  PubMed  Google Scholar 

  47. Liang H et al. The role of cell surface receptors in the activation of human B cells by phosphorothioate oligonucleotides J Immunol 2000 165: 1438–1445

    Article  CAS  PubMed  Google Scholar 

  48. Macfarlane DE, Manzel L . Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds J Immunol 1998 160: 1122–1131

    CAS  PubMed  Google Scholar 

  49. Jakob T et al. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA J Immunol 1998 161: 3042–3049

    CAS  PubMed  Google Scholar 

  50. Draghia-Akli R et al. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs Nat Biotechnol 1999 17: 1179–1183

    Article  CAS  PubMed  Google Scholar 

  51. Maddox PH, Jenkins D . 3-Aminopropyltriethoxysilane (APES): a new advance in section adhesion J Clin Pathol 1987 40: 1256–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank George Dickson (Royal Holloway, London) and Jim Owen (Royal Free Hospital, London) for the loan of the BTX electroporator and electrodes. This work was funded by the Wellcome Trust and the Muscular Dystrophy Campaign. E Signori was supported by a short-term mobility fellowship from the Consiglio Nazionale delle Ricerche, Italy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, J., Signori, E., Wells, K. et al. Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase – increased expression with reduced muscle damage. Gene Ther 8, 1264–1270 (2001). https://doi.org/10.1038/sj.gt.3301522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301522

Keywords

This article is cited by

Search

Quick links