Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Hepatic intra-arterial delivery of a retroviral vector expressing the cytosine deaminase gene, controlled by the CEA promoter and intraperitoneal treatment with 5-fluorocytosine suppresses growth of colorectal liver metastases

Abstract

Targeting of colorectal liver metastases by regional gene therapy was tested in a clinically relevant syngeneic model. First, the CEA-CD-113 retroviral vector containing the cytosine deaminase gene controlled by the CEA specific tumour cell promoter, was shown in vitro to convert 5-fluorocytosine to 5-fluorouracil, resulting in cancer cell killing with a large bystander effect. Second, 10 days after the establishment of liver metastases, retroviral vectors were delivered to the liver by hepatic artery injection. After 5-fluorocytosine administration for 7 days, most surface metastases disappeared and tumour volumes were suppressed up to 8.2-fold. The results support the development of this approach for patient treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Parker SL, Tong T, Bolden S, Wingo PA . Cancer statistics, 1996 CA Cancer J Clin 1996 46: 5–27

    Article  CAS  PubMed  Google Scholar 

  2. Geoghegan JG, Scheele J . Treatment of colorectal liver metastases Br J Surg 1999 86: 158–169

    Article  CAS  PubMed  Google Scholar 

  3. Jarnagin WR et al. Liver resection for metastatic colorectal cancer: assessing the risk of occult irresectable disease J Am Coll Surg 1999 188: 33–42

    Article  CAS  PubMed  Google Scholar 

  4. Rougier P et al. Prospective study of prognostic factors in patients with unresected hepatic metastases from colorectal cancer Br J Surg 1995 82: 1397–1400

    Article  CAS  PubMed  Google Scholar 

  5. Simmonds PC . Palliative chemotherapy for advanced colorectal cancer: systematic review and meta-analysis. Colorectal Cancer Collaborative Group Br Med J 2000 321: 531–535

    Article  CAS  Google Scholar 

  6. Jonker DJ, Maroun JA, Kocha W . Survival benefit of chemotherapy in metastatic colorectal cancer: a meta-analysis of randomized controlled trials Br J Cancer 2000 82: 1789–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Breedis C, Young G . The blood supply of neoplasms in the liver Am J Pathol 1954 30: 969–985

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ackerman NB . The blood supply of experimental liver metastases. IV. Changes in vascularity with increasing tumor growth Surgery 1974 75: 589–596

    CAS  PubMed  Google Scholar 

  9. Kemeny N et al. Intrahepatic or systemic infusion of fluorodeoxyuridine in patients with liver metastases from colorectal carcinoma. A randomised trial Ann Intern Med 1987 107: 459–465

    Article  CAS  PubMed  Google Scholar 

  10. Rougier P et al. Hepatic arterial infusion of floxuridine in patients with liver metastases from colorectal carcinoma: long-term results of a prospective randomised trial J Clin Oncol 1992 10: 1112–1118

    Article  CAS  PubMed  Google Scholar 

  11. Allen-Mersh TG et al. Quality of life and survival with continuous hepatic-artery floxuridine infusion for colorectal liver metastases Lancet 1994 344: 1255–1260

    Article  CAS  PubMed  Google Scholar 

  12. Meta-Analysis Group in Cancer . Reappraisal of hepatic arterial infusion in the treatment of nonresectable liver metastases from colorectal cancer J Natl Cancer Inst 1996 88: 252–258

    Article  Google Scholar 

  13. Harmantas A, Rotstein LE, Langer B . Regional versus systemic chemotherapy in the treatment of colorectal carcinoma metastatic to the liver. Is there a survival difference? Meta-analysis of the published literature Cancer 1996 78: 1639–1645

    Article  CAS  PubMed  Google Scholar 

  14. Lorenz M, Muller HH . Randomized, multicenter trial of fluorouracil plus leucovorin administered either via hepatic arterial or intravenous infusion versus fluorodeoxyuridine administered via hepatic arterial infusion in patients with nonresectable liver metastases from colorectal carcinoma J Clin Oncol 2000 18: 243–254

    Article  CAS  PubMed  Google Scholar 

  15. O'Connell MJ et al. Sequential intrahepatic fluorodeoxyuridine and systemic fluorouracil plus leucovorin for the treatment of metastatic colorectal cancer confined to the liver J Clin Oncol 1998 16: 2528–2533

    Article  CAS  PubMed  Google Scholar 

  16. Kemeny N et al. Arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer N Engl J Med 1999 341: 2039–2048

    Article  CAS  PubMed  Google Scholar 

  17. Chen S-H et al. Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival Cancer Res 1996 56: 3758–3762

    CAS  PubMed  Google Scholar 

  18. Ohwada A, Hirshowitz EA, Crystal RG . Regional delivery of adenovirus vector containing the Escherichia coli cytosine deaminase gene to provide local activation of 5-fluorocytosine to suppress the growth of colon carcinoma metastatic to liver Hum Gene Ther 1996 7: 1567–1576

    Article  CAS  PubMed  Google Scholar 

  19. Austin EA, Huber BE . A first step in the development of gene therapy for colorectal carcinoma: cloning, sequencing and expression of E. coli cytosine deaminase Mol Pharmacol 1993 43: 380–387

    CAS  PubMed  Google Scholar 

  20. Mullen CA, Kilstrup M, Blaese RM . Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system Proc Natl Acad Sci USA 1992 89: 33–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huber BE et al. In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase Cancer Res 1993 53: 4619–4626

    CAS  PubMed  Google Scholar 

  22. Huber BE et al. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase Proc Natl Acad Sci USA 1994 91: 8302–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mullen CA, Coale MM, Lowe R, Blaese RM . Tumors expressing the cytosine deaminase gene can be eliminated in vivo with 5FC and induce protective immunity to wild type tumor Cancer Res 1994 54: 1503–1506

    CAS  PubMed  Google Scholar 

  24. Trinh QT et al. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug system in human colorectal carcinoma cell line Cancer Res 1995 7: 2235–2245

    Google Scholar 

  25. Richards CA, Austin EA, Huber BE . Transcriptional regulatory sequence of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy Hum Gene Ther 1995 6: 881–893

    Article  CAS  PubMed  Google Scholar 

  26. Hirschowitz EA et al. In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine Hum Gene Ther 1995 6: 1055–1063

    Article  CAS  PubMed  Google Scholar 

  27. van der Eb MM et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration Gene Therapy 1998 5: 451–458

    Article  CAS  PubMed  Google Scholar 

  28. Lawrence TS et al. Preferential cytotoxicity of cells transduced with cytosine deaminase compared to bystander cells after treatment with 5-fluorocytosine Cancer Res 1998 58: 2588–2593

    CAS  PubMed  Google Scholar 

  29. Qian C et al. Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma Hum Gene Ther 1997 8: 349–358

    Article  CAS  PubMed  Google Scholar 

  30. Brand K et al. Liver associated toxicity of the HSV-TK/GCV approach and adenoviral vectors Cancer Gene Ther 1997 4: 9–16

    CAS  PubMed  Google Scholar 

  31. Lan K-H et al. In vivo selective gene expression and therapy mediated by adenoviral vectors for human carcinoembryonic antigen-producing gastric carcinoma Cancer Res 1997 57: 4279–4284

    CAS  PubMed  Google Scholar 

  32. Green NK et al. Sensitization of colorectal and pancreatic cancer lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene Cancer Gene Ther 1997 4: 229–238

    CAS  PubMed  Google Scholar 

  33. Caruso M et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene Proc Natl Acad Sci USA 1993 90: 7024–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freeman SM et al. The ‘bystander effect’: tumour regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  35. Mar E-C, Chiou J-F, Cheng Y-C, Huang E-S . Inhibition of cellular DNA polymerase α and human cytomegalovirus-induced DNA polymerase by the triphosphates of 9-(2-hydroxyethoxymethyl)guanine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine J Virol 1985 53: 776–780

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Samejima Y, Meruelo D . ‘Bystander killing’ induces apoptosis and is inhibited by forskolin Gene Therapy 1995 2: 50–58

    CAS  PubMed  Google Scholar 

  37. Pitts JD . Cancer gene therapy: a bystander effect using the gap junctional pathway Mol Carcinog 1994 11: 127–139

    Article  CAS  PubMed  Google Scholar 

  38. Block A et al. Gene therapy of metastatic colon carcinoma: regression of multiple hepatic metastases by adenoviral expression of bacterial cytosine deaminase Cancer Gene Ther 2000 7: 438–445

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Wilson JM . Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4(+) CTLs in vivo J Immunol 1995 155: 2564–2570

    CAS  PubMed  Google Scholar 

  40. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kievit E et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts Cancer Res 1999 59: 1417–1421

    CAS  PubMed  Google Scholar 

  42. Bradford MM . A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 1976 72: 248–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to John Yates and Gerry Lepts (University of Liverpool) for technical support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, M., Ghaneh, P., Greenhalf, W. et al. Hepatic intra-arterial delivery of a retroviral vector expressing the cytosine deaminase gene, controlled by the CEA promoter and intraperitoneal treatment with 5-fluorocytosine suppresses growth of colorectal liver metastases. Gene Ther 8, 1241–1247 (2001). https://doi.org/10.1038/sj.gt.3301518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301518

Keywords

This article is cited by

Search

Quick links