Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp19 K region

Abstract

The use of genetically engineered, replication-selective viruses to treat cancer is being realized with viruses such as ONYX-015, a human adenovirus that selectively destroys p53 mutant cancer cells. To enhance further the clinical efficacy of ONYX-015 and viruses like it, we have developed a novel gene delivery system for replicating adenoviruses. This system has two unique features. First, it uses the endogenous adenoviral gene expression machinery (promoter, splicing, polyadenylation) to drive transgene expression. Second, a single region or gene in the multi-gene E3 transcription unit is selectively substituted for by the therapeutic transgene(s). Analyzing various transgene substitutions for the 6.7 K/gp19 K region of E3, we demonstrate the following: (1) transgene expression in this system is predictable and mimics the substituted endogenous gene expression pattern, (2) expression of surrounding E3 genes can be retained, (3) the insertion site choice can effect both the transgene expression level and the viral life cycle, and, (4) expression levels from this system are superior to those generated from a replication-defective virus using the HCMV enhancer-promoter and this is dependent on viral DNA replication. This unique methodology has broad application to the rapidly evolving field of replicating virus-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bischoff JR et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells Science 1996 274: 373–376

    Article  CAS  PubMed  Google Scholar 

  2. Heise C et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents Nat Med 1997 6: 639–645

    Article  Google Scholar 

  3. Hermiston T . Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer J Clin Invest 2000 105: 1169–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freytag SO et al. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy (see comments) Hum Gene Ther 1998 9: 1323–1333

    Article  CAS  PubMed  Google Scholar 

  5. Wildner O et al. Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer Gene Therapy 1999 6: 57–62

    Article  CAS  PubMed  Google Scholar 

  6. Bett AJ, Prevec L, Graham FL . Packaging capacity and stability of human adenovirus type 5 vectors J Virol 1993 67: 5911–5921

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Berkner KL, Sharp PA . Genertion of adenovirus by transfection of plasmids Nucleic Acids Res 1983 11: 6003–6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kelly TJ Jr, Lewis AM Jr . Use of nondefective adenovirus-simian virus 40 hybrids for mapping the simian virus 40 genome J Virol 1973 12: 643–652

    PubMed  PubMed Central  Google Scholar 

  9. Flint SJ et al. Adenovirus transcription. II. RNA sequences complementry to simian virus 40 and adenovirus 2 DNA in AD2+ND1− and AD2+ND3− infected cells J Virol 1975 16: 662–673

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Graham FL, Prevec L . Adenovirus-based expression vectors and recombinant vaccines Biotechnology 1992 20: 363–390

    CAS  PubMed  Google Scholar 

  11. Chengalvala MV et al. Adenovirus vectors for gene expression Curr Opin Biotechnol 1991 2: 718–722

    Article  CAS  PubMed  Google Scholar 

  12. Wold WS, Tollefson AE, Hermiston TW . E3 transcription unit of adenovirus Curr Top Microbiol Immunol 1995 199: 237–274

    CAS  PubMed  Google Scholar 

  13. Wold WS et al. Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic Curr Opin Immunol 1999 11: 380–386

    Article  CAS  PubMed  Google Scholar 

  14. Hawkins LK, Hermiston TW . Gene delivery from the E3 region of the replicating human adenovirus: evalution of the ADP region Gene Therapy 2001 8: 1132–1141

    Article  CAS  PubMed  Google Scholar 

  15. Hawkins LK, Hermiston TW . Gene delivery from the E3 region of the replicating, human adenovirus: evaluation of the E3B region Gene Therapy 2001 8: 1142–1148

    Article  CAS  PubMed  Google Scholar 

  16. Wold WS et al. Evidence that AGUAUAUGA and CCAAGAUGA initiate translation in the same mRNA region E3 of adenovirus Virology 1986 148: 168–180

    Article  CAS  PubMed  Google Scholar 

  17. Benedict et al. Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand J Biol Chem 2001 276: 3270–3278

    Article  CAS  PubMed  Google Scholar 

  18. Hicklin DJ, Marincola FM, Ferrone S . HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story Mol Med Today 1999 5: 178–186

    Article  CAS  PubMed  Google Scholar 

  19. Pawelec G, Zeuthen J, Kiessling R . Escape from host-antitumor immunity Crit Rev Oncog 1997 8: 111–141

    Article  CAS  PubMed  Google Scholar 

  20. Markiewicz MA, Gajewski TF . The immune system as anti-tumor sentinel: molecular requirements for an anti-tumor immune response Crit Rev Oncog 1999 10: 247–260

    CAS  PubMed  Google Scholar 

  21. Antonia SJ, Extermann M, Flavell RA . Immunologic nonresponsiveness to tumors Crit Rev Oncog 1998 9: 35–41

    Article  CAS  PubMed  Google Scholar 

  22. Bhat BM, Brady HA, Pursley MH, Wold WS . Deletion mutants that alter differential RNA processing in the E3 complex transcription unit of adenovirus J Mol Biol 1986 190: 543–547

    Article  CAS  PubMed  Google Scholar 

  23. Tollefson AE et al. The adenovirus death protein (E3-11.6 K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells J Virol 1996 70: 2296–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tollefson AE et al. The E3–11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants Virology 1996 220: 152–162

    Article  CAS  PubMed  Google Scholar 

  25. Chow LT, Broker TR, Lewis JB . Complex splicing patterns of RNAs from the early regions of adenovirus-2 J Mol Biol 1979 134: 265–303

    Article  CAS  PubMed  Google Scholar 

  26. Bhat BM, Wold WS . Genetic analysis of mRNA synthesis in adenovirus region E3 at different stages of productive infection by RNA-processing mutants J Virol 1986 60: 54–63

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Elkon KB et al. Tumor necrosis factor alpha plays a central role in immune-mediated clearance of adenoviral vectors Proc Natl Acad Sci USA 1997 94: 9814–9819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huber B et al. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase Proc Natl Acad Sci USA 1994 91: 8302–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pfizenmaier K, Scheurich P, Schluter C, Kronke M . Tumor necrosis factor enhances HLA-A,B,C and HLA-DR gene expression in human tumor cells J Immunol 1987 138: 975–980

    CAS  PubMed  Google Scholar 

  30. Ohno S et al. Increased therapeutic efficacy induced by tumor necrosis factor alpha combined with platinum complexes and whole-body hyperthermia in rats Cancer Res 1992 52: 4096–4101

    CAS  PubMed  Google Scholar 

  31. Krosnick JA, Mule JJ, McIntosh JK, Rosenberg SA . Augmentation of antitumor efficacy by the combination of recombinant tumor necrosis factor and chemotherapeutic agents in vivo Cancer Res 1989 49: 3729–3733

    CAS  PubMed  Google Scholar 

  32. Lev-Chelouche D et al. Limb desmoid tumors: a possible role for isolated limb perfusion with tumor necrosis factor-alpha and melphalan Surgery 1999 126: 963–967

    Article  CAS  PubMed  Google Scholar 

  33. Kimura K, Gelmann EP . Tumor necrosis factor-alpha and Fas activate complementary Fas-associated death domain-dependent pathways that enhance apoptosis induced by gamma-irradiation J Biol Chem 2000 275: 8610–8617

    Article  CAS  PubMed  Google Scholar 

  34. Shimomura K et al. Recombinant human tumor necrosis factor-alpha: thrombus formation is a cause of anti-tumor activity Int J Cancer 1988 4: 243–247

    Article  Google Scholar 

  35. Kamanda H et al. In vitro remodeling of tumor vascular endothelial cells using conditioned medium from various tumor cells and their sensitivity to TNF-alpha Biochem Biophys Res Commun 2000 268: 809–813

    Article  Google Scholar 

  36. Carswell EA et al. An endotoxin-induced serum factor that causes necrosis of tumors Proc Natl Acad Sci USA 1975 72: 3666–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang AM et al. Molecular cloning of the complementary DNA for human tumor necrosis factor Science 1985 228: 149–154

    Article  CAS  PubMed  Google Scholar 

  38. Feinberg B et al. A phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients J Clin Oncol 1988 6: 1328–1334

    Article  CAS  PubMed  Google Scholar 

  39. Mortiz T et al. Phase I study of recombinant human tumor necrosis factor alpha in advanced malignant disease Cancer Immunol Immunother 1989 29: 144–150

    Google Scholar 

  40. Sherman ML et al. Recombinant human tumor necrosis administered as a five-day continuous infusion in cancer patients: phase I toxicity and effects on lipid metabolism J Clin Oncol 1988 6: 344–350

    Article  CAS  PubMed  Google Scholar 

  41. Spriggs DR et al. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion. A phase I and pharmacologic study J Natl Cancer Inst 1988 80: 1039–1044

    Article  CAS  PubMed  Google Scholar 

  42. Marr RA et al. Tumour immunotherapy using an adenoviral vector expressing a membrane-bound mutant of murine TNFα Gene Therapy 1997 4: 1181–1188

    Article  CAS  PubMed  Google Scholar 

  43. Tollefson AE, Hermiston TW, Wold WSM . Preparation and titration of CsCl-banded adenovirus stock. In: Wold WSM (ed.) Adenovirus Methods and Protocols Humana Press: Totowa, NJ 1999 1–10

    Google Scholar 

  44. Kammann M, Laufs J, Schell J, Gronenborn B . Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR) Nucleic Acids Res 1989 17: 5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koh J, Enders GH, Dynlacht BD, Harlow E . Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition Nature 1995 375: 506–510

    Article  CAS  PubMed  Google Scholar 

  46. Feig LA, Cooper GM . Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP Mol Cell Biol 1988 8: 3235–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hermiston TW, Tollefson AE, Wold WSM . Construction of mutations in the adenovirus early region 3 (E3) transcription units. In: Wold WSM (ed.) Adenovirus Methods and Protocols Humana Press: Totowa, NJ 1999 11–24

    Google Scholar 

  48. Hirt B . Selective extraction of polyoma DNA from infected mouse cell cultures J Mol Biol 1967 26: 365–369

    Article  CAS  PubMed  Google Scholar 

  49. Rogulski KR et al. Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy Clin Cancer Res 1997 3: 2081–2088

    CAS  PubMed  Google Scholar 

  50. Richards CA, Austin EA, Huber BE . Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy Hum Gene Ther 1995 6: 881–893

    Article  CAS  PubMed  Google Scholar 

  51. Laemmli UK . Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 1970 227: 680–685

    Article  CAS  PubMed  Google Scholar 

  52. Tollefson AE et al. A 14,500 MW protein is coded by region E3 of group C human adenoviruses Virology 1990 175: 9–29

    Article  Google Scholar 

  53. Tollefson AE, Wold WS . Identification and gene mapping of a 14,700-molecular-weight protein encoded by region E3 of group C adenoviruses J Virol 1998 62: 33–39

    Google Scholar 

Download references

Acknowledgements

We wish to thank Drs Frank McCormick, William SM Wold and Sylvie Laquerre for critical review of the manuscript, Dr William SM Wold for E3 antibodies, Adam Sampson-Johannes and Josh Watanabe for technical support and Ynez Dugan for manuscript preparation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, L., Johnson, L., Bauzon, M. et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp19 K region. Gene Ther 8, 1123–1131 (2001). https://doi.org/10.1038/sj.gt.3301507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301507

Keywords

This article is cited by

Search

Quick links