Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Intratumoral IL-18 gene transfer improves therapeutic efficacy of antibody-targeted superantigen in established murine melanoma

Abstract

Antibody-targeted superantigen C215Fab-SEA is a fusion protein of staphylococcal enterotoxin A (SEA) and the Fab region of the tumor-reactive C215 mAb. It can trigger CTL against C215 antigen-positive tumor cells and induce tumor-suppressive cytokines. However, the antitumor effect of C215Fab-SEA is not satisfactory because of suboptimal production of Th1 cytokines after repeated administration. Interleukin 18 (IL-18) is a novel cytokine with profound effects on Th1 cellular response. In this study, we showed that adenovirus-mediated intratumoral IL-18 gene transfer strongly improved the therapeutic efficacy of C215Fab-SEA in the pre-established C215 antigen-expressing B16 melanoma murine model. More significant tumor inhibition and prolonged survival time were observed in tumor-bearing mice received combined therapy of C215Fab-SEA and Ad IL-18 than those of mice treated with C215Fab-SEA or AdIL-18 alone. Combination therapy augmented NK and CTL activities of tumor-bearing mice more markedly. The production of IL-2 and IFN-γ also increased more significantly. More potent antitumor effect of combined therapy was observed in IL-10 KO mice with enhanced Th1 response. Our data demonstrated that the antitumor effect of C215Fab-SEA immunotherapy could be potentiated significantly by combination with intratumoral IL-18 gene transfer through more efficient activation of Th1 immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Klarnet JP et al. FBL-reactive CD8+ cytotoxic and CD4+ helper T lymphocytes recognize distinct Friend murine leukemia virus-encoded antigen J Exp Med 1989 169: 457–467

    Article  CAS  PubMed  Google Scholar 

  2. Kann M et al. CD4+ T cells clones specific for the human p97 melanoma-associated antigen can eradicate pulmonary metastases from a murine tumor expressing the p97 antigen J Immunol 1991 146: 3235–3241

    Google Scholar 

  3. Hom SS et al. Common expression of melanoma tumor-associated antigens recognized by human tumor infiltrating lymphocytes: analysis by human lymphocyte antigen restriction J Immunother 1991 10: 153–164

    CAS  PubMed  Google Scholar 

  4. White J et al. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice Cell 1989 56: 27–35

    Article  CAS  PubMed  Google Scholar 

  5. Fischer H et al. Production of TNF-alpha and TNF-beta by staphylococcal enterotoxin A activated human T cells J Immunol 1990 144: 4663–4669

    CAS  PubMed  Google Scholar 

  6. Dohlsten M et al. Superantigen-induced cytokines suppress growth of human colon-carcinoma cells Int J Cancer 1993 54: 482–488

    Article  CAS  PubMed  Google Scholar 

  7. Dohlsten M et al. Immunopharcology of the superantigen staphylococcal enterotoxin A in T cell receptor V beta 3 trangenic mice Immunology 1993 79: 520–527

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dohlsten M et al. Monoclonal antibody-superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy Proc Natl Acad Sci USA 1994 91: 8945–8949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ihle J et al. Antibody-targeted superantigens induce lysis of major histocompatibility complex classII-negative T-cell leukemia lines Cancer Res 1995 55: 623–628

    CAS  PubMed  Google Scholar 

  10. Lando PA et al. Tumor-reactive superantigens suppress tumor growth in humanized SCID mice Int J Cancer 1995 62: 466–471

    Article  CAS  PubMed  Google Scholar 

  11. Dohlsten M et al. Immunotherapy of human colon cancer by antibody-targeted superantigens Cancer Immunol Immunother 1995 41: 162–168

    Article  CAS  PubMed  Google Scholar 

  12. Dohlsten M et al. Antibody-targeted superantigens are potent inducers of tumor-infiltrating T lymphocytes in vivo Proc Natl Acad Sci USA 1995 92: 9791–9795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Litton MJ et al. Antibody-targeted superantigen therapy induces tumor-infiltrating lymphocytes, excessive cytokine production, and apoptosis in human colon carcinoma Eur J Immunol 1996 26: 1–9

    Article  CAS  PubMed  Google Scholar 

  14. Rosendahl A et al. Immune response during tumor therapy with antibody-superantigen fusion proteins Int J Cancer 1996 68: 109–113

    Article  CAS  PubMed  Google Scholar 

  15. Giantonio BJ et al. Superantigen-based immunotherapy: a phase I trial of PNU-214565, a monoclonal antibody-staphylococcal enterotoxin A recombinant fusion protein, in advanced pancreaticand colorectal cancer J Clin Oncol 1997 15: 1994–2007

    Article  CAS  PubMed  Google Scholar 

  16. Rosendahl A et al. Perforin and IFN-gamma are involved in the antitumor effects of antibody-targeted superantigens J Immunol 1998 160: 5309–5313

    CAS  PubMed  Google Scholar 

  17. Nielsen SE et al. Phase I study of single, escalating doses of a superantigen-antibody fusion protein (PNU-214565) in patients with advanced colorectal or pancreatic carcinoma J Immunother 2000 23: 146–153

    Article  CAS  PubMed  Google Scholar 

  18. Rosendahl A et al. Long-term survival and complete cures of B16 melanoma-carrying animals after therapy with tumor-targeted IL-2 and SEA Int J Cancer 1999 81: 156–163

    Article  CAS  PubMed  Google Scholar 

  19. Sakurai M et al. Comparative study of the antitumor effect of two typrs of murine recombinant interferons (beta) and (gamma), against B16-F10 melanoma Cancer Immunol Immunother 1988 26: 109–113

    Article  CAS  PubMed  Google Scholar 

  20. Mareel M, Dragonetti C, Tavernier J, Fiers W . Tumor-selective cytotoxic effects of murine tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) in organ culture of B16 melanoma cells and heart tissue Int J Cancer 1988 42: 470–473

    Article  CAS  PubMed  Google Scholar 

  21. Okamura H et al. Cloning of a new cytokine that induces IFN-gamma production by T cells Nature 1995 378: 88–91

    Article  CAS  PubMed  Google Scholar 

  22. Micallef MJ et al. Interferon-gamma-inducing factor enhances T helper 1cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production Eur J Immunol 1996 26: 1647–1651

    Article  CAS  PubMed  Google Scholar 

  23. Dao T et al. Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity murine T helper 1 cells Cell Immunol 1996 173: 230–235

    Article  CAS  PubMed  Google Scholar 

  24. Micallef MJ et al. In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin 18 in mice bearing syngeneic Meth A sarcoma malignant ascites Cancer Immunol Immunother 1997 43: 361–367

    Article  CAS  PubMed  Google Scholar 

  25. Micallef MJ et al. Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with MethA sarcoma Cancer Res 1997 57: 4557–4563

    CAS  PubMed  Google Scholar 

  26. Tasaki K et al. Protective immunity is induced in murine colon carcinoma cells by the expression of interleukin-12 or interleukin-18, which activate type 1 helper T cells Cancer Gene Ther 2000 7: 247–254

    Article  CAS  PubMed  Google Scholar 

  27. Kikuchi T et al. Antitumor activity of interleukin-18 on mouse glioma cells J Immunother 2000 23: 184–189

    Article  CAS  PubMed  Google Scholar 

  28. Yang X et al. IL-10 gene knock out mice show enhanced Th1-like protective immunity and absent granuloma formation following chlamydia trachomatis lung infection J Immunol 1999 162: 1010–1017

    CAS  PubMed  Google Scholar 

  29. Bjork P et al. Isolation, partial characterization, and molecular cloning of a human colon adenocarcinoma cell-surface glycoprotein recognized by the C215 mouse monoclonal antibody J Biol Chem 1993 268: 24232–24241

    CAS  PubMed  Google Scholar 

  30. Ju DW et al. Interleukin-18 gene transfer increases antitumor effects of suicide gene therapy through efficient induction of antitumor immunity Gene Therapy 2000 7: 1672–1679

    Article  CAS  PubMed  Google Scholar 

  31. Pardoll DM . Cancer vaccines Nature Med 1999 4: 525–531

    Article  Google Scholar 

  32. Li Y et al. Costimulation of tumo-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma J Immunol 1994 153: 421–427

    CAS  PubMed  Google Scholar 

  33. Lotze MT et al. Cytokine gene therapy of cancer Cancer 1996 2: 63–72

    CAS  Google Scholar 

  34. Bubenik J . Granulocyte-macrophage colony-stimulating factor gene-modified vaccines for immunotherapy of cancer Folia Biol (praha) 1999 45: 115–119

    CAS  Google Scholar 

  35. Blankenstein T, Qin Z . Cancer vaccine Gene Therapy 1996 3: 95–96

    CAS  PubMed  Google Scholar 

  36. Belfrage H, Dohlsten M, Hedlund G, Kalland T . Prevention of superantigen-induced tolerance in vivo by interleukin-2 treatment Cancer Immunol Immunother 1997 44: 77–82

    Article  CAS  PubMed  Google Scholar 

  37. Nagai H et al. Antitumor effects on mouse melanoma elicited by local secretion of interleukin-12 and their enhancement by treatment with interleukin-18 Cancer Invest 2000 18: 206–213

    Article  CAS  PubMed  Google Scholar 

  38. Cao R, Farnebo J, Kurimoto M, Cao Y . Interleukin-18 acts as an angiogenesis and tumor suppressor FASEB J 1999 13: 2195–2202

    Article  CAS  PubMed  Google Scholar 

  39. Aruga A et al. Type 1 versus type 2 cytokine release by V beta T cell subpopulations determines in vivo antitumor reactivity:IL-10 mediates a suppressive one J Immunol 1997 159: 664–673

    CAS  PubMed  Google Scholar 

  40. Litton MJ et al. The distinct role of CD4+ and CD8+ T-cells during the anti-tumor effects of targeted superantigens Br J Cancer 1999 81: 359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sundstedt A et al. Immunoregulatory role of IL-10 during superantigen-induced hyporesponsiveness in vivo J Immunol 1997 158: 180–186

    CAS  PubMed  Google Scholar 

  42. Fiorentino DF et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells J Immunol 1991 146: 3444–3451

    CAS  PubMed  Google Scholar 

  43. Ding L et al. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression J Immunol 1993 151: 1224–1234

    CAS  PubMed  Google Scholar 

  44. Oswald IP, Gazzinelli RT, Sher A, James SL . IL-10 synergizes with IL-4 and transforming growth factor-β to inhibit macrophage cytotoxic activity J Immunol 1992 148: 3578–3582

    CAS  PubMed  Google Scholar 

  45. Groux H, Bigler M, de Vries JE, Roncarolo MG . Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells J Exp Med 1996 184: 19–29

    Article  CAS  PubMed  Google Scholar 

  46. Fitzpatrick L, Makrigiannis AP, Kaiser M, Hoskin D . Anti-CD3-activated killer T cells: interferon-gamma and interleukin-10 cross-regulate granzyme B expression and the induction of major histocompatibity complex-unrestricted cytotoxicity J Interferon Cytokine Res 1996 16: 537–546

    Article  CAS  PubMed  Google Scholar 

  47. Masayuki U et al. Expression of mouse mammary tumor virus superantigen accelerates tumorigenicity of myeloma cells J Virol 2000 74: 8226–8233

    Article  Google Scholar 

  48. Lei H et al. Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engineered to secret macrophage colony-stimulating factor and interferon-γ Gene Therapy 2000 7: 707–713

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the gifts of C215Fab-SEA, C242Fab-SEA, C215Mab, SEA, plasmid PKGE839 from Active Biotech Research AB (Sweden). This work was supported by grants from the National Natural Science Foundation of China (No. 39770837 and No. 39730420).

Author information

Authors and Affiliations

Authors

Additional information

H Yu, Cancer Institute, Zhejiang University, 68 Jiefang Road, Hangzhou, 310009, PR China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Yu, H., Ju, D. et al. Intratumoral IL-18 gene transfer improves therapeutic efficacy of antibody-targeted superantigen in established murine melanoma. Gene Ther 8, 542–550 (2001). https://doi.org/10.1038/sj.gt.3301428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301428

Keywords

This article is cited by

Search

Quick links