Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Connexin 26 enhances the bystander effect in HSVtk/GCV gene therapy for human bladder cancer by adenovirus/PLL/DNA gene delivery

Abstract

Herpes simplex thymidine kinase/ganciclovir (HSVtk/GCV) gene therapy has been used for the treatment of a variety of cancers. Its efficacy is enhanced by the bystander effect that helps overcome the delivery problems commonly observed in current gene therapy. Connexins encode proteins that produce gap junctions, which enable intercellular communication and the bystander effect. We previously demonstrated that decreased Cx 26 expression and loss of gap junctional intercellular communication were associated with human bladder cancer. To investigate the efficacy of the bystander effect in HSVtk/GCV gene therapy, the Cx 26 gene was introduced into UM-UC-3 and UM-UC-14 bladder cancer cell lines by an adenovirus poly-L-lysine conjugate using a multigenic expression plasmid that expressed both the HSVtk and Cx 26 genes. We found significantly increased cytotoxicity in HSVtk/GCV gene therapy after introduction of the HSVtk and Cx 26 genes together compared with the cytotoxicity seen after introduction of the HSVtk gene and LacZ genes in vitro and in vivo. Cytotoxicity correlated with Cx 26 expression and the induction of functional gap junctions. This study indicates that combination gene therapy with co-expression of the HSVtk and Cx 26 genes potentiates HSVtk/GCV gene therapy through the bystander effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA . CA Cancer J Clin 1999 49: 8–31

  2. Grossman HB . Superficial bladder cancer: decreasing the risk of recurrence Oncology 1996 10: 1617–1624

    CAS  PubMed  Google Scholar 

  3. Herr HW . Natural history of superficial bladder tumors: 10- to 20-year follow-up of treated patients World J Urol 1997 15: 84–88

    Article  CAS  PubMed  Google Scholar 

  4. Cookson MS et al. The treated natural history of high risk superficial bladder cancer: 15-year outcome J Urol 1997 158: 62–67

    Article  CAS  PubMed  Google Scholar 

  5. Knuechel R, Siebert-Wellnhofer A, Traub O, Dermietzel R . Connexin expression and intercellular communication in two- and three-dimensional in vitro cultures of human bladder carcinoma Am J Pathol 1996 149: 1321–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennett MV et al. Gap junctions: new tools, new answers, new questions Neuron 1991 6: 305–320

    Article  CAS  PubMed  Google Scholar 

  7. Dermietzel R, Spray DC . Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 1993 16: 186–192

    Article  CAS  PubMed  Google Scholar 

  8. Naus CC, Bechberger JF, Caveney S, Wilson JX . Expression of gap junction genes in astrocytes and C6 glioma cells Neurosci Lett 1991 126: 33–36

    Article  CAS  PubMed  Google Scholar 

  9. Lee SW, Tomasetto JC, Paul DL, Sager R . Transcriptional down-regulation of gap junction proteins blocks junctional communication in mammary cell lines J Cell Biol 1992 118: 1213–1221

    Article  CAS  PubMed  Google Scholar 

  10. Grossman HB, Liebert M, Lee IK, Lee SW . Decreased connexin expression and intercellular communication in human bladder cancer cells Cancer Res 1994 54: 3062–3065

    CAS  PubMed  Google Scholar 

  11. Eghbali B et al. Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo Proc Natl Acad Sci USA 1991 89: 10218–10221

    Google Scholar 

  12. Zhu D, Kidder GM, Caveney S, Naus CC . Growth retardation in glioma cells cocultured with cells overexpressing a gap junction protein Proc Natl Acad Sci USA 1992 89: 10218–10221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mesnil M et al. Negative growth control of HeLa cells by connexin gene: connexin species specificity Cancer Res 1995 55: 629–639

    CAS  PubMed  Google Scholar 

  14. Hirschi KK, Xu CE, Tsukamoto T, Sager R . Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary cells and restore differentiation potential Cell Growth Differ 1996 7: 861–870

    CAS  PubMed  Google Scholar 

  15. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  16. Moolten FL, Wells JM, Heyman RA, Evans RM . Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene Hum Gene Ther 1990 1: 125–134

    Article  CAS  PubMed  Google Scholar 

  17. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  18. Barbra AD, Hardin J, Ray J, Gage FH . Thymidine kinase-mediated killing of rat brain tumors J Neurosurg 1993 79: 729–735

    Article  Google Scholar 

  19. Freeman SM et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  20. Mesnil M et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins Proc Natl Acad Sci USA 1996 93: 1831–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mesnil M, Piccoli C, Yamasaki H . A tumor suppressor gene, Cx26, also mediates the bystander effect in HeLa cells Cancer Res 1997 57: 2929–2932

    CAS  PubMed  Google Scholar 

  22. Vrionis FD et al. The bystander effect by tumor cells expressing the herpes simplex virus thymidine kinase (HSVtk) gene is dependent on connexin expression and cell communication via gap junctions Gene Therapy 1997 4: 577–585

    Article  CAS  PubMed  Google Scholar 

  23. Cirenei C et al. In vitro and in vivo effects of retrovirus-mediated transfer of the connexin 43 gene in malignant gliomas: consequences for HSVtk/GCV anticancer gene therapy Gene Therapy 1998 5: 1221–1226

    Article  CAS  PubMed  Google Scholar 

  24. Duflot-Dancer A et al. Long-term connexin-mediated bystander effect in highly tumorigenic human cells in vivo in herpes simplex virus thymidine kinase/ganciclovir gene therapy Gene Therapy 1998 5: 1372–1378

    Article  CAS  PubMed  Google Scholar 

  25. Ghoumari AM et al. Actions of HSVtk and connexin43 gene delivery on gap junctional communication and drug sensitization in hepatocellular carcinoma Gene Therapy 1998 5: 1114–1121

    Article  CAS  PubMed  Google Scholar 

  26. McMasters RA et al. Lack of bystander killing in herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient connexin43 gap junction formation Hum Gene Ther 1998 9: 2253–2261

    Article  CAS  PubMed  Google Scholar 

  27. Yang L et al. Intercellular communication mediates the bystander effect during herpes simplex thymidine kinase/ganciclovir-based gene therapy of human gastrointestinal tumor cells Hum Gene Ther 1998 9: 719–728

    Article  CAS  PubMed  Google Scholar 

  28. Carystinos GD et al. Cyclic-AMP induction of gap junctional intercellular communication increases bystander effect in suicide gene therapy Clin Cancer Res 1999 5: 61–68

    CAS  PubMed  Google Scholar 

  29. Estin D, Li M, Spray D, Wu JK . Connexins are expressed in primary brain tumors and enhance the bystander effect in gene therapy Neurosurgery 1999 44: 361–368

    Article  CAS  PubMed  Google Scholar 

  30. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997 89: 21–39

    Article  CAS  PubMed  Google Scholar 

  31. Huber BE et al. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase Proc Natl Acad Sci USA 1994 91: 8302–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai DW et al. Stable expression of the wild-type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer Hum Gene Ther 1993 4: 617–624

    Article  CAS  PubMed  Google Scholar 

  33. Blaese M et al. Vectors in cancer therapy: how will they deliver? Cancer Gene Ther 1995 2: 291–297

    CAS  PubMed  Google Scholar 

  34. Freeman SM et al. In situ use of suicide genes for cancer therapy Semin Oncol 1996 23: 31–45

    CAS  PubMed  Google Scholar 

  35. Freeman SM, Ramesh R, Marrogi A J . Immune system in suicide gene therapy Lancet 1997 349: 2–3

    Article  CAS  PubMed  Google Scholar 

  36. Vile RG et al. Generation of an anti-tumour immune response in a non-immunogenic tumor: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th-1-like profile of intratumoral cytokine expression Int J Cancer 1997 71: 267–274

    Article  CAS  PubMed  Google Scholar 

  37. Bi W et al. An HSVtk-mediated local and distant antitumor bystander effect in tumors of head and neck origin in athymic mice Cancer Gene Ther 1997 4: 246–252

    CAS  PubMed  Google Scholar 

  38. Kianmanesh AR et al. A ‘distant’ bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor Hum Gene Ther 1997 8: 1807–1814

    Article  CAS  PubMed  Google Scholar 

  39. Proulx AA, Xiang LZ, Naus CC . Transfection of rhabdomyosarcoma cells with connexin 43 induces myogenic differentiation Cell Growth Differ 1997 8: 533–540

    CAS  PubMed  Google Scholar 

  40. Martyn KD et al. Immortalized connexin43 knockout cell lines display a subset of biological properties associated with the transformed phenotype Cell Growth Differ 1997 8: 1015–1027

    CAS  PubMed  Google Scholar 

  41. Yamasaki H et al. Role of connexin (gap junction) genes in cell growth control and carcinogenesis CR Acad Sci III 1999 322: 151–159

    Article  CAS  Google Scholar 

  42. Wilgenbus KK et al. Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues Int J Cancer 1992 51: 522–529

    Article  CAS  PubMed  Google Scholar 

  43. Cristiano RJ et al. Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus–DNA complex Proc Natl Acad Sci USA 1993 90: 11548–11552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen DM, Wiehle SA, Roth JA, Cristiano RJ . Gene delivery into malignant cells in vivo by a conjugated adenovirus/DNA complex Cancer Gene Ther 1997 4: 183–190

    CAS  PubMed  Google Scholar 

  45. Sommer B et al. Efficient gene transfer into normal human skeletal cells using recombinant adenovirus and conjugated adenovirus–DNA complexes Calcif Tissue Int 1999 64: 45–49

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen DM et al. Delivery of the p53 tumor suppressor gene into lung cancer cells by an adenovirus/DNA complex Cancer Gene Ther 1997 4: 191–198

    CAS  PubMed  Google Scholar 

  47. Couffinhal T et al. Histochemical staining following LacZ gene transfer underestimates transfection efficiency Hum Gene Ther 1997 8: 929–934

    Article  CAS  PubMed  Google Scholar 

  48. Marconi P et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors Mol Ther 2000 1: 71–81

    Article  CAS  PubMed  Google Scholar 

  49. Grossman HB et al. Improved growth of human urothelial carcinoma cell cultures J Urol 1986 136: 953–959

    Article  CAS  PubMed  Google Scholar 

  50. MacGregor GR, Mogg AE, Burke JF, Caskey CT . Histochemical staining of clonal mammalian cell lines expressing E. coli beta galactosidase indicates heterogeneous expression of the bacterial gene Somat Cell Mol Genet 1987 13: 253–265

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka M et al. Gelsolin: a candidate for suppressor of human bladder cancer Cancer Res 1995 55: 3228–3232

    CAS  PubMed  Google Scholar 

  52. El-Fouly MH, Trosko JE, Chang C . Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication Exp Cell Res 1987 168: 422–430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Sandra A Wiehle for her help in Adv/PLL conjugate preparation. This work was supported in part by a grant from the WM Keck Center for Cancer Gene Therapy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Fraizer, G., De La Cerda, J. et al. Connexin 26 enhances the bystander effect in HSVtk/GCV gene therapy for human bladder cancer by adenovirus/PLL/DNA gene delivery. Gene Ther 8, 139–148 (2001). https://doi.org/10.1038/sj.gt.3301367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301367

Keywords

This article is cited by

Search

Quick links