Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids

Abstract

Mouse polyoma virus-like particles (or pseudocapsids) are composed solely of recombinant viral coat protein. They can interact with DNA and transport it to cells, resulting in gene expression both in tissue culture and in mice. We demonstrate that DNA transfer in vitro depends on partial packaging of DNA within the virus-like capsid. Cell surface sialic acid residues and an intact microtubule network, required for viral infectivity, are also necessary for pseudocapsid-mediated gene expression from heterologous DNA. Thus, gene delivery in this system requires pathways utilised by polyoma virions, rather than proceeding via the ‘nonspecific’ endosomal route typical of nonviral systems such as liposomes or calcium phosphate precipitates. Despite the fact that all cells appear to internalise pseudocapsid/DNA complexes, only a proportion show productive gene delivery. Bulk internalisation of complexes is dependent on actin fibres, but not cell surface sialic acid or microtubules, indicating that a second transport pathway exists for pseudocapsids which is nonproductive for gene transfer. The model suggested by these data demonstrates the virus-like properties of the pseudocapsid system, and provides a basis for further development to produce a highly effective gene delivery vehicle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Verma IM, Somia N . Gene therapy – promises, problems and prospects Nature 1997 389: 239–242

    Article  CAS  PubMed  Google Scholar 

  2. Krauzewicz N, Griffin BE . Polyoma and papilloma virus vectors for cancer gene therapy Adv Exp Med Biol 2000 465: 73–82

    Article  CAS  PubMed  Google Scholar 

  3. Salunke DM, Caspar DL, Garcea RL . Self-assembly of purified polyomavirus capsid protein VP1 Cell 1986 46: 895–904

    Article  CAS  PubMed  Google Scholar 

  4. Montross L et al. Nuclear assembly of polyomavirus capsids in insect cells expressing the major capsid protein VP1 J Virol 1991 65: 4991–4998

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Forstová J, Krauzewicz N, Wallace S, Street AJ et al. Cooperation of structural proteins during late events in the life cycle of polyomavirus J Virol 1993 67: 1405–1413

    PubMed  PubMed Central  Google Scholar 

  6. Hagensee ME, Yaegashi N, Galloway DA . Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins J Virol 1993 67: 315–322

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodgers RE, Chang D, Cai X, Consigli RA . Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly J Virol 1994 68: 3386–3390

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Volpers C, Schirmacher P, Streeck RE, Sapp M . Assembly of the major and the minor capsid protein of human papillomavirus type 33 into virus-like particles and tubular structures in insect cells Virology 1994 200: 504–512

    Article  CAS  PubMed  Google Scholar 

  9. Pawlita M et al. DNA encapsidation by viruslike particles assembled in insect cells from the major capsid protein VP1 of B-lymphotropic papovavirus J Virol 1996 70: 7517–7526

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Touzé A et al. Production of human papillomavirus type 45 virus-like particles in insect cells using a recombinant baculovirus FEMS Microbiol Lett 1996 141: 111–116

    Article  PubMed  Google Scholar 

  11. Chang D et al. Self-assembly of the JC virus major capsid protein, VP1, expressed in insect cells J Gen Virol 1997 78: 1435–1439

    Article  CAS  PubMed  Google Scholar 

  12. Sandalon Z, Oppenheim A . Self-assembly and protein–protein interactions between the SV40 capsid proteins produced in insect cells Virology 1997 237: 414–421

    Article  CAS  PubMed  Google Scholar 

  13. Shishido Y et al. Assembly of JC virus-like particles in COS7 cells J Med Virol 1997 51: 265–272

    Article  CAS  PubMed  Google Scholar 

  14. Unckell F, Streeck RE, Sapp M . Generation and neutralization of pseudovirions of human papillomavirus type 33 J Virol 1997 71: 2934–2939

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldmann C et al. Molecular cloning and expression of major structural protein VP1 of the human polyomavirus JC virus: formation of virus-like particles useful for immunological and therapeutic studies J Virol 1999 73: 4465–4469

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ou WC et al. The major capsid protein, VP1, of human JC virus expressed in Escherichia coli is able to self-assemble into a capsid-like particle and deliver exogenous DNA into human kidney cells J Gen Virol 1999 80: 39–46

    Article  CAS  PubMed  Google Scholar 

  17. Tellinghuisen TL et al. In vitro assembly of alphavirus cores by using nucleocapsid protein expressed in Escherichia coli J Virol 1999 73: 5309–5319

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gillock ET et al. Polyomavirus major capsid protein VP1 is capable of packaging cellular DNA when expressed in the baculovirus system J Virol 1997 71: 2857–2865

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stokrová J et al. Interactions of heterologous DNA with polyomavirus major structural protein, VP1 FEBS Lett 1999 445: 119–125

    Article  PubMed  Google Scholar 

  20. Forstová J et al. Polyoma virus pseudocapsids as efficient carriers of heterologous DNA into mammalian cells Hum Gene Ther 1995 6: 297–306

    Article  PubMed  Google Scholar 

  21. Soeda E et al. Enhancement by polylysine of transient, but not stable, expression of genes carried into cells by polyoma VP1 pseudocapsids Gene Therapy 1998 5: 1410–1419

    Article  CAS  PubMed  Google Scholar 

  22. Krauzewicz N et al. Sustained ex vivo and in vivo transfer of a reporter gene using polyoma virus pseudocapsids Gene Therapy 2000 7: 1094–1102

    Article  CAS  PubMed  Google Scholar 

  23. Touzé A, Coursaget P . In vitro gene transfer using human papillomavirus-like particles Nucleic Acids Res 1998 26: 1317–1323

    Article  PubMed  PubMed Central  Google Scholar 

  24. Prince HM . Gene transfer: a review of methods and applications Pathology 1998 30: 335–347

    Article  CAS  PubMed  Google Scholar 

  25. Gao X, Huang L . Cationic liposome-mediated gene transfer Gene Therapy 1995 2: 710–722

    CAS  PubMed  Google Scholar 

  26. Aposhian HV, Thayer RE, Qasba PK . Formation of nucleoprotein complexes between polyoma empty capsids and DNA J Virol 1975 15: 645–653

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Krauzewicz N et al. Myristylated polyomavirus VP2: role in the life cycle of the virus J Virol 1990 64: 4414–4420

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Soeda E . Developing polyomaviral pseudocapsids for gene transfer; delivery into cells with poly-L-lysine. London: Imperial College School of Medicine, 1999, PhD dissertation

  29. Kartenbeck J, Stukenbrok H, Helenius A . Endocytosis of simian virus 40 into the endoplasmic reticulum J Cell Biol 1989 109: 2721–2729

    Article  CAS  PubMed  Google Scholar 

  30. Stehle T, Harrison SC . Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments Structure 1996 4: 183–194

    Article  CAS  PubMed  Google Scholar 

  31. Fried H, Cahan LD, Paulson JC . Polyoma virus recognizes specific sialyloligosaccharide receptors on host cells Virology 1981 109: 188–192

    Article  CAS  PubMed  Google Scholar 

  32. Dramsi S, Cossart P . Intracellular pathogens and the actin cytoskeleton Annu Rev Cell Dev Biol 1998 14: 137–166

    Article  CAS  PubMed  Google Scholar 

  33. Kalicharran K, Dales S . Involvement of microtubules and the microtubule-associated protein tau in trafficking of JHM virus and components within neurons Adv Exp Med Biol 1995 380: 57–61

    Article  CAS  PubMed  Google Scholar 

  34. Sodeik B, Ebersold MW, Helenius A . Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus J Cell Biol 1997 136: 1007–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lippincott-Schwartz J, Smith CL . Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras Curr Opin Neurobiol 1997 7: 631–639

    Article  CAS  PubMed  Google Scholar 

  36. Scales SJ, Pepperkok R, Kreis TE . Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI Cell 1997 90: 1137–1148

    Article  CAS  PubMed  Google Scholar 

  37. Geppert TD, Lipsky PE . Association of various T cell-surface molecules with the cytoskeleton. Effect of cross-linking and activation J Immunol 1991 146: 3298–3305

    CAS  PubMed  Google Scholar 

  38. Mackay RL, Consigli RA . Early events in polyoma virus infection: attachment, penetration, and nuclear entry J Virol 1976 19: 620–636

    CAS  PubMed  PubMed Central  Google Scholar 

  39. An K et al. Use of the baculovirus system to assemble polyomavirus capsid-like particles with different polyomavirus structural proteins: analysis of the recombinant assembled capsid-like particles J Gen Virol 1999 80: 1009–1016

    Article  CAS  PubMed  Google Scholar 

  40. Anderson WF . Human gene therapy Nature 1998 392: 25–30

    Article  CAS  PubMed  Google Scholar 

  41. Alton EW et al. Towards gene therapy for cystic fibrosis: a clinical progress report Gene Therapy 1998 5: 291–292

    Article  CAS  PubMed  Google Scholar 

  42. Gluzman Y . SV40-transformed simian cells support the replication of early SV40 mutants Cell 1981 23: 175–182

    Article  CAS  PubMed  Google Scholar 

  43. Graham FL, van der Eb AJ . Transformation of rat cells by DNA of human adenovirus 5 Virology 1973 54: 536–539

    Article  CAS  PubMed  Google Scholar 

  44. Dilworth SM, Griffin BE . Monoclonal antibodies against polyoma virus tumor antigens Proc Natl Acad Sci USA 1982 79: 1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M Stevens and J Forstová for many helpful discussions, A Sardini and G Warnes for discussion and assistance with light microscopy and flow cytometry and I Robinson for help with AFM. Support is acknowledged from The Wellcome Trust (Grant No. 048711/Z/96), the Medical Research Council and the European Community (No. BIO4-CT97–2147). The scanning force microscope was purchased with assistance from the HEFCW Technology Foresight Initiative.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauzewicz, N., Stokrová, J., Jenkins, C. et al. Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids. Gene Ther 7, 2122–2131 (2000). https://doi.org/10.1038/sj.gt.3301322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301322

Keywords

This article is cited by

Search

Quick links