Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Production of first generation adenovirus vectors: a review

Abstract

In the past decade, adenovirus vectors have generated tremendous interest, especially in gene therapy applications. In the so-called ‘first generation’ adenovirus vectors, the transgenes are inserted in place of the E1 region, or less often the E3 region. Although second-generation and helper-dependent adenovirus vectors will probably prevail in the future in applications that require long-term gene expression, first generation adenovirus vectors will remain very useful in other settings, such as cancer and vaccination, or simply to transfect cell lines that are refractory to other transfection methods. Until a few years ago, the construction of first generation adenovirus vectors was a labor-intensive and time-consuming process. More than 20 methods have appeared that facilitate their construction and are reviewed below.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Berkner K . Development of adenovirus vectors for the expression of heterologous genes Biotechniques 1988 6: 616–629

    CAS  PubMed  Google Scholar 

  2. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery Curr Opin Biotechnol 1999 10: 440–447

    Article  CAS  PubMed  Google Scholar 

  3. Grunhaus A, Horwitz M . Adenoviruses as cloning vectors Semin Virol 1992 3: 237–252

    CAS  Google Scholar 

  4. Haddada H, Cordier L, Perricaudet M . Gene therapy using adenoviral vectors. In: Doerfler W, Bohm P (eds) The Molecular Repertoire of Adenoviruses Springer-Verlag: Berlin 1995 297–306

    Chapter  Google Scholar 

  5. Horwitz M . Adenoviridae and their replication. In: Fields BNet al (eds) Virology Raven Press: New York 1990 1679–1721

    Google Scholar 

  6. Kovesdi I, Brough D, Bruder J, Wickham T . Adenoviral vectors for gene transfer Curr Opin Biotechnol 1997 8: 583–589

    Article  CAS  PubMed  Google Scholar 

  7. Trapnell B, Gorziglia M . Gene therapy using adenoviral vectors Curr Opin Biotechnol 1994 5: 617–625

    Article  CAS  PubMed  Google Scholar 

  8. Bett A, Prevec L, Graham F . Packaging capacity and stability of human adenovirus type 5 vectors J Virol 1993 67: 5911–5921

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Harui A, Suzuki S, Kochanek S, Mitani K . Frequency and stability of chromosomal integration of adenovirus vectors J Virol 1999 73: 6141–6146

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Recchia A et al. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector Proc Natl Acad Sci USA 1999 96: 2615–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lieber A, Steinwaerder D, Carlson C, Kay M . Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes J Virol 1999 73: 9314–9324

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Graham FL, Smiley J, Russel WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–74

    Article  CAS  PubMed  Google Scholar 

  13. Fallaux F et al. Characterization of 911, a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors Hum Gene Ther 1996 7: 215–222

    Article  CAS  PubMed  Google Scholar 

  14. Fallaux F et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses Hum Gene Ther 1998 9: 1909–1917

    Article  CAS  PubMed  Google Scholar 

  15. Wold W, Tollefson A, Hermiston T . E3 transcription unit of adenovirus. In: Doerfler W, Bohm P (eds) The Molecular Repertoire of Adenoviruses Springer-Verlag: Berlin 1995 237–274

    Chapter  Google Scholar 

  16. Tollefson A et al. The adenovirus death protein (E3–11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells J Virol 1996 70: 2296–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee M, Abina M, Haddada H, Perricaudet M . The constitutive expression of the immunomodulatory gp19k protein in E1−, E3− adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector Gene Therapy 1995 2: 256–262

    CAS  PubMed  Google Scholar 

  18. Bruder J, Jie T, McVey D, Kovesdi I . Expression of gp19K increases the persistence of transgene expression from an adenovirus vector in the mouse lung and liver J Virol 1997 71: 7623–7628

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schowalter D et al. Heterologous expression of adenovirus E3-gp19K in an E1a-deleted adenovirus vector inhibits MHC I expression in vitro, but does not prolong transgene expression in vivo Gene Therapy 1997 4: 351–360

    Article  CAS  PubMed  Google Scholar 

  20. Bett AJ, Haddara W, Prevec L, Graham FL . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 Proc Natl Acad Sci USA 1994 91: 8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilgenkrantz H et al. Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: role of the immune response Hum Gene Ther 1995 6: 1265–1274

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Su Q, Wilson J . Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs J Virol 1996 70: 7209–7212

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou H, O'Neal W, Morral N, Beaudet A . Development of a complementing cell line and a system for construction of adenovirus vectors with E1 and E2a deleted J Virol 1996 70: 7030–7038

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gorziglia M et al. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy J Virol 1996 70: 4173–4178

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lusky M et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted J Virol 1998 72: 2022–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Amalfitano A, Begy C, Chamberlain J . Improved adenovirus packaging cell lines to support the growth of replication-defective gene-delivery vectors Proc Natl Acad Sci USA 1996 93: 3352–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amalfitano A, Chamberlain J . Isolation and characterization of packaging cell lines that coexpress the adenovirus E1, DNA polymerase, and preterminal proteins: implications for gene therapy Gene Therapy 1997 4: 258–263

    Article  CAS  PubMed  Google Scholar 

  28. Langer S, Schaack J . 293 cell lines that inducibly express high levels of adenovirus type 5 precursor terminal protein Virology 1996 221: 172–179

    Article  CAS  PubMed  Google Scholar 

  29. Gorziglia M et al. Generation of an adenovirus vector lacking E1, E2a, E3, and all of E4 except open reading frame 3 J Virol 1999 73: 6048–6055

    CAS  PubMed  PubMed Central  Google Scholar 

  30. He T-C et al. A simplified system for generating recombinant adenoviruses Proc Natl Acad Sci USA 1998 95: 2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brough D et al. A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions E1 and E4 J Virol 1996 70: 6497–6501

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao G, Yang Y, Wilson J . Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy J Virol 1996 70: 8934–8943

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yeh P et al. Efficient dual transcomplementation of adenovirus E1 and E4 regions from a 293-derived cell line expressing a minimal E4 functional unit J Virol 1996 70: 559–565

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Krougliak V, Graham F . Development of cell lines capable of complementing E1, E4, and protein IX defective adenovirus type 5 mutants Hum Gene Ther 1995 6: 1575–1586

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Jia X, Finer M . A packaging cell line for propagation of recombinant adenovirus vectors containing two lethal gene-region deletions Gene Therapy 1995 2: 775–783

    CAS  PubMed  Google Scholar 

  36. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase Proc Natl Acad Sci USA 1996 93: 5731–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parks R et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal Proc Natl Acad Sci USA 1996 93: 13565–13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fisher K et al. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis Virology 1996 217: 11–22

    Article  CAS  PubMed  Google Scholar 

  39. Kumar-Singh R, Chamberlain J . Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells Hum Mol Genet 1996 5: 913–921

    Article  CAS  PubMed  Google Scholar 

  40. Steinwaerder D, Carlson C, Lieber A . Generation of adenovirus vectors devoid of all viral genes by recombination between inverted repeats J Virol 1999 73: 9303–9313

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hartigan-O'Connor D, Amalfitano A, Chamberlain J . Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polymerase J Virol 1999 73: 7835–7841

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chinnadurai G, Chinnadurai S, Brusca J . Physical mapping of a large-plaque mutation of adenovirus type 2 J Virol 1979 32: 623–628

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schaack J, Langer S, Guo X . Efficient selection of recombinant adenoviruses by vectors that express β-galactosidase J Virol 1995 69: 3920–3923

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Munz P, Young C . End-joining of DNA fragments in adenovirus transfection of human cells Virology 1991 183: 160–169

    Article  CAS  PubMed  Google Scholar 

  45. Imler J-L et al. An efficient procedure to select and recover recombinant adenovirus vectors Gene Therapy 1995 2: 263–268

    CAS  PubMed  Google Scholar 

  46. Davis AR, Meyers K, Wilson JM . High throughput method for creating and screening recombinant adenoviruses Gene Therapy 1998 5: 1148–1152

    Article  CAS  PubMed  Google Scholar 

  47. Jones N, Shenk T . Isolation of deletion and substitution mutants of adenovirus type 5 Cell 1978 13: 181–188

    Article  CAS  PubMed  Google Scholar 

  48. Berk A et al. Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs Cell 1979 17: 935–944

    Article  CAS  PubMed  Google Scholar 

  49. Galos R, Williams J, Shenk T, Jones N . Physical location of host-range mutations of adenovirus type 5; deletion and marker-rescue mapping Virology 1980 104: 510–513

    Article  CAS  PubMed  Google Scholar 

  50. Volkert F, Young C . The genetic analysis of recombination using adenovirus overlapping terminal DNA fragments Virology 1983 125: 175–193

    Article  CAS  PubMed  Google Scholar 

  51. Miyake S et al. Efficient generation of recombinant adenoviruses using adenovirus DNA–terminal protein complex and a cosmid bearing the full-length virus genome Proc Natl Acad Sci USA 1996 93: 1320–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hardy S et al. Construction of adenovirus vectors through cre-lox recombination J Virol 1997 71: 1842–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Anderson R et al. A simple method for the rapid generation of recombinant adenovirus vectors Gene Therapy 2000 7: 1034–1038

    Article  CAS  PubMed  Google Scholar 

  54. McGrory WJ, Bautista DS, Graham FL . A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5 Virology 1988 163: 614–617

    Article  CAS  PubMed  Google Scholar 

  55. Leach D, Stahl F . Viability of l phages carrying a perfect palindrome in the absence of recombination nucleases Nature 1983 305: 448–451

    Article  CAS  PubMed  Google Scholar 

  56. Hay R, Stow N, McDougall I . Replication of adenovirus mini-chromosomes J Mol Biol 1984 175: 493–510

    Article  CAS  PubMed  Google Scholar 

  57. Ng P et al. A high-efficiency Cre/loxP-based system for construction of adenoviral vectors Hum Gene Ther 1999 10: 2667–2672

    Article  CAS  PubMed  Google Scholar 

  58. Tashiro F, Niwa H, Miyazaki J-I . Constructing adenoviral vectors by using the circular form of the adenoviral genome cloned in a cosmid and the Cre-loxP recombination system Hum Gene Ther 1999 10: 1845–1852

    Article  CAS  PubMed  Google Scholar 

  59. Stow N . Cloning of a DNA fragment from the left-hand terminus of the adenovirus type 2 genome and its use in site-directed mutagenesis J Virol 1981 37: 171–180

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Aoki K et al. Efficient generation of recombinant adenoviral vectors by cre-lox recombination in vitro Mol Med 1999 5: 224–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Crouzet J et al. Recombinational construction in Escherichia coli of infectious adenoviral genomes Proc Natl Acad Sci USA 1997 94: 1414–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gustin K, Imperiale M . Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein J Virol 1998 72: 7860–7870

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Souza D, Armentano D . Novel cloning method for recombinant adenovirus construction in Escherichia coli Biotechniques 1999 26: 502–508

    Article  CAS  PubMed  Google Scholar 

  65. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method Hum Gene Ther 1998 9: 2577–2583

    Article  CAS  PubMed  Google Scholar 

  66. Mizuguchi H, Kay M . A simple method for constructing E1- and E1/E4-deleted recombinant adenoviral vectors Hum Gene Ther 1999 10: 2013–2017

    Article  CAS  PubMed  Google Scholar 

  67. Feiss M, Siegle D . Packaging of the bacteriophage lambda chromosome: dependence of cos cleavage on chromosome length Virology 1979 92: 190–200

    Article  CAS  PubMed  Google Scholar 

  68. Fu S, Deisseroth A . Use of cosmid adenoviral vector cloning system for the in vitro construction of recombinant adenoviral vectors Hum Gene Ther 1997 8: 1321–1330

    Article  CAS  PubMed  Google Scholar 

  69. Kojima H, Ohishi N, Yagi K . Generation of recombinant adenovirus vector with infectious adenoviral genome released from cosmid-based vector by simple procedure allowing complex manipulation Biochem Biophys Res Commun 1998 246: 868–872

    Article  CAS  PubMed  Google Scholar 

  70. Danthinne X . New vectors for the construction of double recombinant adenoviruses J Virol Methods 1999 81: 11–20

    Article  CAS  PubMed  Google Scholar 

  71. Danthinne X, Werth E . New tools for the generation of E1- and/or E3-substituted adenoviral vectors Gene Therapy 2000 7: 80–87

    Article  CAS  PubMed  Google Scholar 

  72. Danthinne X . Simultaneous insertion of two expression cassettes into adenovirus vectors (submitted for publication)

  73. Ketner G et al. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone Proc Natl Acad Sci USA 1994 91: 6186–6190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lochmuller H et al. Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells Hum Gene Ther 1994 5: 1485–1491

    Article  CAS  PubMed  Google Scholar 

  75. King A et al. Processive proofreading by the adenovirus DNA polymerase. Association with the priming protein reduces exonucleolytic degradation Nucleic Acids Res 1997 25: 1745–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MJI acknowledges the support of NIH grants GM34902 and HL64762. XD is the recipient of a fellowship from the Mountain States Medical Research Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danthinne, X., Imperiale, M. Production of first generation adenovirus vectors: a review. Gene Ther 7, 1707–1714 (2000). https://doi.org/10.1038/sj.gt.3301301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301301

Keywords

This article is cited by

Search

Quick links