Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function

Abstract

Dendritic cells (DC) are potent antigen-presenting cells (APC). Ongoing preclinical and clinical studies exploit this capacity for the immunotherapy of tumors. We tested vaccinia virus (VV) as a vector to transduce human DC. Immature and mature DC were prepared from blood monocytes and infected with (1) recombinant VV expressing GFP to analyze infection rates, virus replication in DC and the effect of infection on DC phenotype and (2) recombinant VV expressing beta-galactosidase (βGAL) under the control of viral early, intermediate and late promoters to analyze the poxvirus-driven gene expression. While the infection rate in DC was comparable to a permissive fibroblast cell line, viral βGAL gene expression was limited to early promoters. Genes under the control of virus late promoters were not expressed by VV in DC, indicating an abortive infection. VV infection selectively reduced the surface expression of the costimulatory molecule CD80 and the DC maturation marker CD83 on mature DC while other surface molecules including CD86 and MHC remained unchanged. In line with this finding, there was a pronounced reduction in the capacity of VV-infected DC to stimulate allogeneic or autologous T cells in mixed lymphocyte reactions. Furthermore, VV infection inhibited the maturation of immature DC after exposure to proinflammatory cytokines. These results indicate that VV-derived vectors may have complex effects on their target cells. In the case of DC used for immunotherapy, this may be detrimental to their function as potent APC and particularly their capacity to activate T helper cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  2. Sallusto F, Cella M, Danieli C, Lanzavecchia A . Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products J Exp Med 1995 182: 389–400

    Article  CAS  PubMed  Google Scholar 

  3. Arrighi JF et al. Long-term culture of human CD34+ progenitors with FLT3-ligand, thrombopoietin, and stem cell factor induces extensive amplification of a CD34−CD14− and a CD34−CD14+ dendritic cell precursor Blood 1999 93: 2244–2252

    CAS  PubMed  Google Scholar 

  4. Hsu FJ et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells Nature Med 1996 2: 52–58

    Article  CAS  PubMed  Google Scholar 

  5. Thurner B et al. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma J Exp Med 1999 190: 1669–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nestle FO et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells Nature Med 1998 4: 328–332

    Article  CAS  PubMed  Google Scholar 

  7. Amoscato AA, Prenovitz DA, Lotze MT . Rapid extracellular degradation of synthetic class I peptides by human dendritic cells J Immunol 1998 161: 4023–4032

    CAS  PubMed  Google Scholar 

  8. van der Bruggen P et al. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3 Eur J Immunol 1994 24: 3038–3043

    Article  CAS  PubMed  Google Scholar 

  9. Zhong L, Granelli-Piperno A, Choi Y, Steinman RM . Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells Eur J Immunol 1999 29: 964–972

    Article  CAS  PubMed  Google Scholar 

  10. Van Tendeloo VF et al. Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor- but not monocyte-derived dendritic cells Gene Therapy 1998 5: 700–707

    Article  CAS  PubMed  Google Scholar 

  11. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells Cancer Gene Ther 1997 4: 17–25

    CAS  PubMed  Google Scholar 

  12. Brown M et al. Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors Cancer Gene Ther 1999 6: 238–245

    Article  CAS  PubMed  Google Scholar 

  13. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells Blood 1998 91: 392–398

    CAS  PubMed  Google Scholar 

  14. Kaplan M et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens J Immunol 1999 163: 699–707

    CAS  PubMed  Google Scholar 

  15. Paoletti E . Applications of pox virus vectors to vaccination: an update Proc Natl Acad Sci USA 1996 93: 11349–11353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carroll MW, Moss B . Poxviruses as expression vectors Curr Opin Biotechnol 1997 8: 573–577

    Article  CAS  PubMed  Google Scholar 

  17. Sutter G, Moss B . Nonreplicating vaccinia vector efficiently expresses recombinant genes Proc Natl Acad Sci USA 1992 89: 10847–10851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tartaglia J et al. NYVAC: a highly attenuated strain of vaccinia virus Virology 1992 188: 217–232

    Article  CAS  PubMed  Google Scholar 

  19. Holzer G et al. Highly efficient induction of protective immunity by a vaccinia virus vector defective in late gene expression J Virol 1999 73: 4536–4542

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Perkus ME, Tartaglia J, Paoletti E . Poxvirus-based vaccine candidates for cancer, AIDS, and other infectious diseases J Leukoc Biol 1995 58: 1–13

    Article  CAS  PubMed  Google Scholar 

  21. Kantor J et al. Immunogenicity and safety of a recombinant vaccinia virus vaccine expressing the carcinoembryonic antigen gene in a nonhuman primate Cancer Res 1992 52: 6917–6925

    CAS  PubMed  Google Scholar 

  22. Cella M et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA J Exp Med 1999 189: 821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salio M, Cella M, Suter M, Lanzavecchia A . Inhibition of dendritic cell maturation by herpes simplex virus Eur J Immunol 1999 29: 3245–3253

    Article  CAS  PubMed  Google Scholar 

  24. Verdijk RM et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells J Immunol 1999 163: 57–61

    CAS  PubMed  Google Scholar 

  25. Faruqi TR, DiCorleto PE . IFN-gamma inhibits double-stranded RNA-induced E-selectin expression in human endothelial cells J Immunol 1997 159: 3989–3994

    CAS  PubMed  Google Scholar 

  26. Heitmeier MR, Scarim AL, Corbett JA . Double-stranded RNA-induced inducible nitric-oxide synthase expression and interleukin-1 release by murine macrophages requires NF-kappaB activation J Biol Chem 1998 273: 15301–15307

    Article  CAS  PubMed  Google Scholar 

  27. Bhardwaj N, Friedman SM, Cole BC, Nisanian AJ . Dendritic cells are potent antigen-presenting cells for microbial superantigens J Exp Med 1992 175: 267–273

    Article  CAS  PubMed  Google Scholar 

  28. Subklewe M et al. Induction of Epstein–Barr virus-specific cytotoxic T-lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or UV-inactivated, recombinant EBNA-3A vaccinia virus Blood 1999 94: 1372–1381

    CAS  PubMed  Google Scholar 

  29. Engelmayer J et al. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion J Immunol 1999 163: 6762–6768

    CAS  PubMed  Google Scholar 

  30. Fonteneau JF et al. Heterogeneity of biologic responses of melanoma-specific CTL J Immunol 1997 159: 2831–2839

    CAS  PubMed  Google Scholar 

  31. Grosjean I et al. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells J Exp Med 1997 186: 801–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fugier-Vivier I et al. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells J Exp Med 1997 186: 813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Broder CC, Kennedy PE, Michaels F, Berger EA . Expression of foreign genes in cultured human primary macrophages using recombinant vaccinia virus vectors Gene 1994 142: 167–174

    Article  CAS  PubMed  Google Scholar 

  34. Drillien R, Spehner D, Bohbot A, Hanau D . Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes Virology 2000 268: 471–481

    Article  CAS  PubMed  Google Scholar 

  35. Di Nicola M et al. Gene transfer into human dendritic antigen-presenting cells by vaccinia virus and adenovirus vectors Cancer Gene Ther 1998 5: 350–356

    CAS  PubMed  Google Scholar 

  36. Cella M et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA J Exp Med 1999 189: 821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kruse M et al. Mature dendritic cells infected with Herpes simplex virus type I are inhibited in their T-cell stimulatory capacity J Virol 2000 74: 7127–7136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schuler G, Steinman RM . Dendritic cells as adjuvants for immune-mediated resistance to tumors J Exp Med 1997 186: 1183–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Young JW, Inaba K . Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity J Exp Med 1996 183: 7–11

    Article  CAS  PubMed  Google Scholar 

  40. Fan Z et al. Cultured blood dendritic cells retain HIV-1 antigen-presenting capacity for memory CTL during progressive HIV-1 infection J Immunol 1997 159: 4973–4982

    CAS  PubMed  Google Scholar 

  41. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  42. Matloubian M, Concepcion RJ, Ahmed R . CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection J Virol 1994 68: 8056–8063

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerlach JT et al. Recurrence of hepatitis C virus after loss of virus-specific CD4+ T-cell response in acute hepatitis C Gastroenterology 1999 117: 933–941

    Article  CAS  PubMed  Google Scholar 

  44. Zajac AJ et al. Viral immune evasion due to persistence of activated T cells without effector function J Exp Med 1998 188: 2205–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. von Herrath MG et al. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge J Virol 1996 70: 1072–1079

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalams SA, Walker BD . The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses J Exp Med 1998 188: 2199–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mizuochi T et al. Role of lymphokine-secreting CD8+ T cells in cytotoxic T lymphocyte responses against vaccinia virus J Immunol 1989 142: 270–273

    CAS  PubMed  Google Scholar 

  48. Ossendorp F et al. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors J Exp Med 1998 187: 693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hung K et al. The central role of CD4+ T cells in the antitumor immune response J Exp Med 1998 188: 2357–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cardin RD, Brooks JW, Sarawar SR, Doherty PC . Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells J Exp Med 1996 184: 863–871

    Article  CAS  PubMed  Google Scholar 

  51. Toes RE, Ossendorp F, Offringa R, Melief CJ . CD4 T cells and their role in antitumor immune responses (comment) J Exp Med 1999 189: 753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Plebanski M et al. Protection from Plasmodium berghei infection by priming and boosting T cells to a single class I-restricted epitope with recombinant carriers suitable for human use Eur J Immunol 1998 28: 4345–4355

    Article  CAS  PubMed  Google Scholar 

  53. Schneider J et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara Nature Med 1998 4: 397–402

    Article  CAS  PubMed  Google Scholar 

  54. Hanke T et al. Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime Vaccine 1998 16: 439–445

    Article  CAS  PubMed  Google Scholar 

  55. Buller RM et al. Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells Nature 1987 328: 77–79

    Article  CAS  PubMed  Google Scholar 

  56. Zimmermann C, Seiler P, Lane P, Zinkernagel RM . Antiviral immune responses in CTLA4 transgenic mice J Virol 1997 71: 1802–1807

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bachmann MF, Zinkernagel RM, Oxenius A . Immune responses in the absence of costimulation: viruses know the trick J Immunol 1998 161: 5791–5794

    CAS  PubMed  Google Scholar 

  58. Agadjanyan MG et al. CD86 (B7–2) can function to drive MHC-restricted antigen-specific CTL responses in vivo J Immunol 1999 162: 3417–3427

    CAS  PubMed  Google Scholar 

  59. Young JW, Steinman RM . Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells J Exp Med 1990 171: 1315–1332

    Article  CAS  PubMed  Google Scholar 

  60. Bhardwaj N et al. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells J Clin Invest 1994 94: 797–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moss B . Poxviridae: the virus and their replication. In: Fields PE, Knop J, Hsu FJ (eds) Fields Virology Lipincott-Raven: Philadelphia 1996 pp 2637–2671

    Google Scholar 

  62. Smith GL et al. Vaccinia virus immune evasion Immunol Rev 1997 159: 137–154

    Article  CAS  PubMed  Google Scholar 

  63. Jonuleit H et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions Eur J Immunol 1997 27: 3135–3142

    Article  CAS  PubMed  Google Scholar 

  64. Davison AJ, Moss B . Structure of vaccinia virus early promoters J Mol Biol 1989 210: 749–769

    Article  CAS  PubMed  Google Scholar 

  65. Baldick CJ, Moss B . Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate-stage genes J Virol 1993 67: 3515–3527

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chakrabarti S, Sisler JR, Moss B . Compact, synthetic, vaccinia virus early/late promoter for protein expression Biotechniques 1997 23: 1094–1097

    Article  CAS  PubMed  Google Scholar 

  67. Dominguez J, Lorenzo MM, Blasco R . Green fluorescent protein expressed by a recombinant vaccinia virus permits early detection of infected cells by flow cytometry J Immunol Methods 1998 220: 115–121

    Article  CAS  PubMed  Google Scholar 

  68. Moss B, Earl PL . Expression of proteins in mammalian cells using vaccinia virus vectors. In: Renos V, Shandor B (eds) Current Protocols of Molecular Biology John Wiley: New York 1998 pp 16.15.1–16.15.5

    Google Scholar 

Download references

Acknowledgements

We wish to thank Rafa Blasco and Bernard Moss for kindly providing recombinant viruses. AWH was supported by grants from the Swiss National Science Foundation and the Schweizerische Krebsliga.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenne, L., Hauser, C., Arrighi, JF. et al. Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Ther 7, 1575–1583 (2000). https://doi.org/10.1038/sj.gt.3301287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301287

Keywords

This article is cited by

Search

Quick links