Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Inherited Disease
  • Published:

Tissue-specific expression and long-term deposition of human collagen VII in the skin of transgenic mice: implications for gene therapy

Abstract

We report the isolation of a cosmid clone containing the entire human COL7A1 gene in one piece. The ability of the genomic sequences within this clone to direct tissue-specific expression of human collagen VII in transgenic mice was tested. The data show that the gene construct is capable of directing expression of collagen VII in the skin of fetal and neonatal transgenic mice. Expression of COL7A1 in these mice was widespread, in a pattern consistent with that found in human tissues and was in parallel with that of the endogenous mouse gene. Immunostaining, using human-specific antibodies, showed that human collagen VII protein was present at the skin basement membrane zone of the transgenic mice. Dermal extracts from 19-month-old transgenic mice contained mature human collagen VII protein, and fibroblasts derived from skin biopsies of these mice actively synthesized human collagen VII. The demonstration of successful and stable expression of human collagen VII in in vivo gene transfer is the first step towards the future development of therapeutic protocols for the rescue of keratinocyte function in severe blistering diseases such as dystrophic epidermolysis bullosa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Burgeson RE . Type VII collagen, anchoring fibrils and epidermolysis bullosa J Invest Dermatol 1993 101: 252–255

    Article  CAS  Google Scholar 

  2. Shimizu H et al. Immunohistochemical, ultrastructural, andmolecular features of Kindler syndrome distinguish it from dystrophic epidermolysis bullosa Arch Dermatol 1997 133: 1111–1117

    Article  CAS  Google Scholar 

  3. Bruckner-Tuderman L . Hereditary skin diseases of anchoring fibrils J Dermatol Sci 1999 20: 122–133

    Article  CAS  Google Scholar 

  4. Bruckner-Tuderman L, Hopfner B, Hammami-Hauasli N . Biology of anchoring fibrils: lessons from dystrophic epidermolysis bullosa Matrix Biol 1999 18: 43–54

    Article  CAS  Google Scholar 

  5. Bruckner-Tuderman L et al. Immunohistochemical and mutation analyses demonstrate that procollagen VII is processed to collagen VII through removal of the NC-2 domain J Cell Biol 1995 131: 551–559

    Article  CAS  Google Scholar 

  6. Christiano AM et al. Structural organization of the human type VII collagen gene (COL7A1), composed of more exons than any previously characterized gene Genomics 1994 21: 169–179

    Article  CAS  Google Scholar 

  7. Christiano AM, Greenspan DS, Lee S, Uitto J . Cloning of human type VII collagen. Complete primary sequence of the alpha 1(VII) chain and identification of intragenic polymorphisms J Biol Chem 1994 269: 20256–20262

    CAS  PubMed  Google Scholar 

  8. Li K et al. cDNA cloning and chromosomal mapping of the mouse type VII collagen gene (Col7a1): evidence for rapid evolutionary divergence of the gene Genomics 1993 16: 733–739

    Article  CAS  Google Scholar 

  9. Kivirikko S, Li K, Christiano AM, Uitto J . Cloning of mouse type VII collagen reveals evolutionary conservation of functional protein domains and genomic organization J Invest Dermatol 1996 106: 1300–1306

    Article  CAS  Google Scholar 

  10. McGrath JA et al. Structural variations in anchoring fibrils in dystrophic epidermolysis bullosa: correlation with type VII collagen expression J Invest Dermatol 1993 100: 366–372

    Article  CAS  Google Scholar 

  11. Heagerty AH et al. Identification of an epidermal basement membrane defect in recessive forms of dystrophic epidermolysis bullosa by LH 7:2 monoclonal antibody: use in diagnosis Br J Dermatol 1986 115: 125–131

    Article  CAS  Google Scholar 

  12. Leigh IM et al. Type VII collagen is a normal component of epidermal basement membrane, which shows altered expression in recessive dystrophic epidermolysis bullosa (published erratum appears in J Invest Dermatol 1989; 92: 135) J Invest Dermatol 1988 90: 639–642

    Article  CAS  Google Scholar 

  13. Bruckner-Tuderman L et al. Lack of type VII collagen in unaffected skin of patients with severe recessive dystrophic epidermolysis bullosa Dermatologica 1988 176: 57–64

    Article  CAS  Google Scholar 

  14. Bruckner-Tuderman L, Mitsuhashi Y, Schnyder UW, Bruckner P . Anchoring fibrils and type VII collagen are absent from skin in severe recessive dystrophic epidermolysis bullosa J Invest Dermatol 1989 93: 3–9

    Article  CAS  Google Scholar 

  15. Pulkkinen L, Uitto J . Mutation analysis and molecular genetics of epidermolysis bullosa Matrix Biol 1999 18: 29–42

    Article  CAS  Google Scholar 

  16. Heinonen S et al. Targeted inactivation of the type VII collagen gene (Col7a1) in mice results in severe blistering phenotype: a model for recessive dystrophic epidermolysis bullosa J Cell Sci 1999 112: 3641–3648

    CAS  PubMed  Google Scholar 

  17. Ghazizadeh S, Harrington R, Taichman L . In vivo transduction of mouse epidermis with recombinant retroviral vectors: implications for cutaneous gene therapy Gene Therapy 1999 6: 1267–1275

    Article  CAS  Google Scholar 

  18. Uitto J, Chung Honet LC, Christiano AM . Molecular biology and pathology of type VII collagen Exp Dermatol 1992 1: 2–11

    Article  CAS  Google Scholar 

  19. Uitto J, Christiano AM . Dystrophic forms of epidermolysis bullosa Semin Dermatol 1993 12: 191–201

    CAS  PubMed  Google Scholar 

  20. Wetzels RHW et al. Distribution patterns of type VII collagen in normal and malignant human tissues Am J Pathol 1991 139: 451–459

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Leigh I, Purkis PE, Bruckner-Tuderman L . LH 7.2 monoclonal antibody detects type VII collagen in the basement membranes of ectodermally derived epithelia including skin Epithelia 1987 1: 17–29

    Google Scholar 

  22. Leivo I et al. Anchoring complex components laminin-5 and type VII collagen in intestine: association with migrating and differentiating enterocytes J Histochem Cytochem 1996 44: 1267–1277

    Article  CAS  Google Scholar 

  23. Nagle RB et al. Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue Am J Pathol 1995 146: 1498–1507

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Paulus W et al. Expression of type VII collagen, the major anchoring fibril component, in normal and neoplastic human nervous system Virch Arch 1995 426: 199–202

    Article  CAS  Google Scholar 

  25. Ryynanen J et al. Type VII collagen gene expression in human umbilical tissue and cells Lab Invest 1993 69: 300–304

    CAS  PubMed  Google Scholar 

  26. Khavari PA . Gene therapy for genetic skin disease J Invest Dermatol 1998 110: 462–467

    Article  CAS  Google Scholar 

  27. Sawamura D et al. In vivo transfer of a foreign gene to keratinocytes using the hemagglutinating virus of Japan–liposome method J Invest Dermatol 1997 108: 195–199

    Article  CAS  Google Scholar 

  28. Braun-Falco M, Doenecke A, Smola H, Hallek M . Efficient gene transfer into human keratinocytes with recombinant adeno-associated virus vectors Gene Therapy 1999 6: 432–441

    Article  CAS  Google Scholar 

  29. Vailly J et al. Corrective gene transfer of keratinocytes from patients with junctional epidermolysis bullosa restores assembly of hemidesmosomes in reconstructed epithelia Gene Therapy 1998 5: 1322–1332

    Article  CAS  Google Scholar 

  30. Seitz CS et al. BP180 gene delivery in junctional epidermolysis bullosa Gene Therapy 1999 6: 42–47

    Article  CAS  Google Scholar 

  31. Sokolov BP et al. Tissue-specific expression of the gene for type I procollagen (COL1A1) in transgenic mice. Only 476 base pairs of the promoter are required if collagen genes are used as reporters J Biol Chem 1995 270: 9622–9629

    Article  CAS  Google Scholar 

  32. Swift GH, Kruse F, MacDonald RJ, Hammer RE . Differential requirements for cell-specific elastase I enhancer domains in transfected cells and transgenic mice Genes Dev 1989 3: 687–696

    Article  CAS  Google Scholar 

  33. Leung KKH et al. Different cis-regulatory DNA elements mediate developmental stage- and tissue-specific expression of the human COL2A1 transgene J Cell Biol 1998 141: 1291–1300

    Article  CAS  Google Scholar 

  34. Darnell JEJ . Variety in the level of gene control in eukaryotic cells Nature 1982 297: 365–371

    Article  CAS  Google Scholar 

  35. Gutman A, Gilthorpe J, Rigby PW . Multiple positive andnegative regulatory elements in the promoter of the mouse homeobox gene Hoxb-4 Mol Cell Biol 1994 14: 8143–8154

    Article  CAS  Google Scholar 

  36. Bonifer C et al. Prerequisites for tissue specific and position independent expression of a gene locus in transgenic mice J Mol Med 1996 74: 663–671

    Article  CAS  Google Scholar 

  37. Chen M et al. Corrective gene transfer in dystrophic epidermolysis bullosa J Invest Dermatol 1999 112: 552 (Abstr. 175)

    Google Scholar 

  38. Fine JD, Bauer EA, McGuire J, Moshell A . Epidermolysis Bullosa: Clinical, Epidemiologic and Laboratory Advances, and the Findings of the National Epidermolysis Bullosa Registry Johns Hopkins University Press: Baltimore 1999

    Google Scholar 

  39. Deng H, Lin Q, Khavari PA . Sustainable cutaneous gene delivery Nat Biotechnol 1997 15: 1388–1391

    Article  CAS  Google Scholar 

  40. Krueger GG, Morgan JR, Petersen MJ . Biologic aspects of expression of stably integrated transgenes in cells of the skin in vitro and in vivo Proc Assoc Am Phys 1999 111: 198–205

    Article  CAS  Google Scholar 

  41. Kolodka TM, Garlick JA, Taichman LB . Evidence forkeratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes Proc Natl Acad Sci USA 1998 95: 4356–4361

    Article  CAS  Google Scholar 

  42. Pellegrini G, Bondanza S, Guerra L, De Luca M . Cultivation of human keratinocyte stem cells: current and future clinical applications Med Biol Eng Comput 1998 36: 778–790

    Article  CAS  Google Scholar 

  43. Bickenbach JR, Roop DR . Transduction of a preselected population of human epidermal stem cells: consequences for gene therapy Proc Assoc Am Phys 1999 111: 184–189

    Article  CAS  Google Scholar 

  44. Cotsarelis G et al. Epithelial stem cells in the skin: definition, markers, localization and functions Exp Dermatol 1999 8: 80–88

    Article  CAS  Google Scholar 

  45. Rudnicka L et al. Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. Regulation bytransforming growth factor-beta J Clin Invest 1994 93: 1709–1715.

    Article  CAS  Google Scholar 

  46. Gobet R et al. Efficacy of cultured epithelial autografts inpediatric burns and reconstructive surgery Surgery 1997 121: 654–661

    Article  CAS  Google Scholar 

  47. Raghunath M et al. Cross-linking of the dermo–epidermal junction of skin regenerating from keratinocyte autografts. Anchoring fibrils are a target for tissue transglutaminase J Clin Invest 1996 98: 1174–1184

    Article  CAS  Google Scholar 

  48. Prockop DJ, Kivirikko KI . Collagens: molecular biology, diseases, and potentials for therapy Annu Rev Biochem 1995 64: 403–434

    Article  CAS  Google Scholar 

  49. Hengge UR et al. Efficient expression of naked plasmid DNA in mucosal epithelium: prospective for the treatment of skin lesions J Invest Dermatol 1998 111: 605–608

    Article  CAS  Google Scholar 

  50. Vogel JC . A direct in vivo approach for skin gene therapy Proc Assoc Am Phys 1999 111: 190–197

    Article  CAS  Google Scholar 

  51. Fan H, Lin Q, Morrissey GR, Khavari PA . Immunization via hair follicles by topical application of naked DNA to normal skin Nat Biotechnol 1999 17: 870–872

    Article  CAS  Google Scholar 

  52. Weiss EH et al. Isolation and characterization of a human collagen alpha 1(I)-like gene from a cosmid library Nucleic Acids Res 1982 10: 1981–1994

    Article  CAS  Google Scholar 

  53. Fuller F, Boedtker H . Sequence determination and analysis of the 3′ region of chicken pro-alpha 1(I) and pro-alpha 2(I) collagen messenger ribonucleic acids including the carboxy-terminal propeptide sequences Biochemistry 1981 20: 996–1006

    Article  CAS  Google Scholar 

  54. Kioussis D et al. Expression and rescuing of a cloned human tumour necrosis factor gene using an EBV-based shuttle cosmid vector EMBO J 1987 6: 355–361

    Article  CAS  Google Scholar 

  55. Hogan B, Costantini F, Lacy E . Manipulating the Mouse Embryo: A Laboratory Manual Cold Spring Harbor Laboratory: New York 1986

    Google Scholar 

  56. Lovell-Badge RH . Introduction of DNA into embryonic stem cells. In: Robertson EJ (ed) Teratocarcinomas and Embryonic Stem Cells – A Practical Approach IRL Press: Oxford 1987 pp 153–182

    Google Scholar 

  57. Bruckner-Tuderman L, Schnyder UW, Winterhalter KH, Bruckner P . Tissue form of type VII collagen from human skin and dermal fibroblasts in culture Eur J Biochem 1987 165: 607–611

    Article  CAS  Google Scholar 

  58. Hintner H et al. Immunofluorescence mapping of antigenic determinants within the dermal–epidermal junction in the mechanobullous diseases J Invest Dermatol 1981 76: 113–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Dystrophic Epidermolysis Bullosa Research Association (DEBRA), The University of Hong Kong Committee for Research and Conference Grants, the Hong Kong Research Grants Council-DAAD Joint Research Scheme and the German Research Council (DFG, grants Br 1475/2–3 and SFB 492/A3). We are also very grateful for skilled technical assistance from Sandra YY Wong and Margit Schubert.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sat, E., Leung, K., Bruckner-Tuderman, L. et al. Tissue-specific expression and long-term deposition of human collagen VII in the skin of transgenic mice: implications for gene therapy. Gene Ther 7, 1631–1639 (2000). https://doi.org/10.1038/sj.gt.3301281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301281

Keywords

This article is cited by

Search

Quick links