Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Retargeting of adenoviral vectors to neurons using the HC fragment of tetanus toxin

Abstract

The HC fragment of tetanus toxin (HC) retains the specific nerve cell binding and transport properties of the holotoxin, but lacks any toxicity. We are investigating the potential for utilising its neurotropism for targeted gene delivery to the central nervous system. Previously we reported the use of HC-polylysine conjugates for selective gene transfer into neuronal cells in vitro. However, as attempts to apply these constructs in vivo were not successful, we have extended these studies to modification of the tropism of adenoviral vectors. Either HC-polylysine conjugates or the Fab fragment of a neutralising anti-knob antibody covalently bound to HC were attached to the virus. Infection of neuronal and non-neuronal cell lines with retargeted virus showed highly increased neuronal cell selectivity, but no significant enhancement of gene delivery into these cells. High concentrations of free HC blocked the infectivity of the retargeted vector efficiently. Intramuscular injection of retargeted virus into mouse tongues resulted in selective gene transfer to the neurons of the hypoglossal nucleus, where no pathological changes were observed. As differentiated neurons do not undergo cell division, appropriate vectors carrying a thymidine kinase gene, which allows selective elimination of dividing cells, may be exploitable for the treatment of tumours of the central nervous system. The demonstrated suitability of the HC fragment of tetanus toxin as targeting moiety for viral vectors also indicates a potential for gene therapy of inherited neurodegenerative diseases such as spinal muscular atrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fink DJ, DeLuca NA, Goins WF, Glorioso JC . Gene transfer to neurons using herpes simplex virus-based vectors Annu Rev Neurosci 1996 19: 265–287

    Article  CAS  PubMed  Google Scholar 

  2. Fink DJ et al. Development of an HSV-based vector for the treatment of Parkinson's disease Exp Neurol 1997 144: 103–121

    Article  CAS  PubMed  Google Scholar 

  3. Howard MK et al. High efficiency gene transfer to the central nervous system of rodents and primates using herpes virus vectors lacking functional ICP27 and ICP34.5 Gene Therapy 1998 5: 1137–1147

    Article  CAS  PubMed  Google Scholar 

  4. Ghadge GD et al. CNS gene delivery by retrograde transport of replication-defective adenoviruses Gene Therapy 1995 2: 132–137

    CAS  PubMed  Google Scholar 

  5. Haase G et al. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors Nature Med 1997 3: 429–436

    Article  CAS  PubMed  Google Scholar 

  6. Niemann H . Molecular biology of clostridial neurotoxins. In: Alouf JE, Freer JH (eds) Sourcebook of Bacterial Toxins Academic Press: London 1991 pp 303–348

    Google Scholar 

  7. Price DL et al. Tetanus toxin: direct evidence for retrograde intraaxonal transport Science 1975 188: 945–947

    Article  CAS  PubMed  Google Scholar 

  8. Schwab M, Thoenen H . Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor Brain Res 1977 122: 459–474

    Article  CAS  PubMed  Google Scholar 

  9. Schiavo G et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin Nature 1992 359: 832–835

    Article  CAS  PubMed  Google Scholar 

  10. Halpern JL, Neale EA . Neurospecific binding, internalization, and retrograde axonal transport Curr Top Microbiol Immunol 1995 195: 221–241

    CAS  PubMed  Google Scholar 

  11. Evinger C, Erichsen JT . Transsynapic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization Brain Res 1986 380: 383–388

    Article  CAS  PubMed  Google Scholar 

  12. Fishman PS, Carrigan DR . Retrograde transneuronal transfer of the fragment C of tetanus toxin Brain Res 1987 406: 275–279

    Article  CAS  PubMed  Google Scholar 

  13. Figueiredo DM et al. Characterization of recombinant tetanus toxin derivatives suitable for vaccine development Infect Immun 1995 63: 3218–3221

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fishman PS, Savitt JM, Farrand DA . Enhanced CNS uptake of systemically administered proteins through conjugation with tetanus C-fragment J Neurol Sci 1990 98: 311–325

    Article  CAS  PubMed  Google Scholar 

  15. Dobrenis K, Joseph A, Rattazzi MC . Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin Proc Natl Acad Sci USA 1992 89: 2297–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Francis JW, Hosler BA, Brown RH, Fishman PS . CuZn superoxide dismutase (SOD-1)/tetanus toxin fragment C hybrid protein for targeted delivery of SOD-1 to neuronal cells J Biol Chem 1995 270: 15434–15442

    Article  CAS  PubMed  Google Scholar 

  17. Figueiredo DM et al. Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous system neurons by retrograde axonal transport Exp Neurol 1997 145: 546–554

    Article  CAS  PubMed  Google Scholar 

  18. Coen L, Osta R, Maury M, Brulet P . Construction of hybrid proteins that migrate retrogradely and trans-synaptically into the central nervous system Proc Natl Acad Sci USA 1997 94: 9400–9405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knight A et al. Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin Eur J Biochem 1999 259: 762–769

    Article  CAS  PubMed  Google Scholar 

  20. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types Nat Biotechnol 1996 14: 1570–1573

    Article  CAS  PubMed  Google Scholar 

  21. Douglas JT et al. Targeted gene delivery by tropism-modified adenoviral vectors Nat Biotechnol 1996 14: 1574–1578

    Article  CAS  PubMed  Google Scholar 

  22. Wickham TJ et al. Targeted adenovirus-mediated gene transfer to endothelial and smooth muscle cells by using bispecific antibodies J Virol 1996 70: 6831–6838

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldman CK et al. Targeted gene delivery to Karposi's sarcoma cells via the fibroblast growth factor receptor Cancer Res 1997 57: 1447–1451

    CAS  PubMed  Google Scholar 

  24. Wickham TJ et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins J Virol 1997 71: 8221–8229

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rogers BE et al. Use of a novel cross-linking method to modify adenoviral tropism Gene Therapy 1997 4: 1387–1392

    Article  CAS  PubMed  Google Scholar 

  26. Krasnykh V et al. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob J Virol 1998 72: 1844–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tillman BW et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector J Immunol 1999 162: 6378–6383

    CAS  PubMed  Google Scholar 

  28. Coutelle C, Douar AM, Colledge WH, Froster U . The challenge of fetal gene therapy Nature Med 1995 1: 864–866

    Article  CAS  PubMed  Google Scholar 

  29. Schneider H, Coutelle C . In utero gene therapy: the case for Nature Med 1999 5: 256–257

    Article  CAS  PubMed  Google Scholar 

  30. Navarro V et al. Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter Gene Therapy 1999 6: 1884–1892

    Article  CAS  PubMed  Google Scholar 

  31. Morral NP et al. High doses of helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity Hum Gene Ther 1998 9: 2709–2716

    Article  CAS  PubMed  Google Scholar 

  32. Halpern JL, Loftus A . Characterization of the receptor-binding domain of tetanus toxin J Biol Chem 1993 268: 11188–11192

    CAS  PubMed  Google Scholar 

  33. Kleitman N, Wood P, Bunge R . Tissue culture methods for the study of myelination. In: Banker G, Goslin K (eds) Culturing Nerve Cells MIT Press: Cambridge 1992 pp 337–377

    Google Scholar 

  34. Graham FL, Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA Virology 1973 52: 456–457

    Article  CAS  PubMed  Google Scholar 

  35. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Graham FL, Smiley J, Russel WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–72

    Article  CAS  PubMed  Google Scholar 

  37. Romanos MA et al. Expression of tetanus toxin fragment C in yeast: gene synthesis is required to eliminate fortuitous polyadenylation sites in AT-rich DNA Nucleic Acids Res 1991 19: 1461–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Dr C Shaw, King's College, London, for providing differentiated dorsal root ganglion cells and thank Dr A Pavirani, Transgène (France), for providing the adenoviral vectors used. This work was supported by the March of Dimes Foundation, the British Medical Research Council, National Institutes of Health grants R01 CA68245, R01 CA74242 and R01 HL50255 and a scholarship of the Studienstiftung des deutschen Volkes to CM.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, H., Groves, M., Mühle, C. et al. Retargeting of adenoviral vectors to neurons using the HC fragment of tetanus toxin. Gene Ther 7, 1584–1592 (2000). https://doi.org/10.1038/sj.gt.3301270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301270

Keywords

This article is cited by

Search

Quick links