Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Retrovirus-mediated transduction of primary ZAP-70-deficient human T cells results in the selective growth advantage of gene-corrected cells: implications for gene therapy

Abstract

Humans lacking the ZAP-70 protein tyrosine kinase present with an absence of CD8+ T cells and defective CD4+ T cells in the periphery. This severe combined immunodeficiency is fatal unless treated by allogeneic bone marrow transplantation. However, in the absence of suitable marrow donors, the development of alternative forms of therapy is desirable. Because lymphocytes are long-lived, it is possible that introduction of the wild-type ZAP-70 gene into CD4+ ZAP-70-deficient T cells will restore their immune function in vivo. Initial investigations evaluating the feasibility of gene therapy for ZAP-70 deficiency were performed using HTLV-I-transformed lymphocytes. Although transformation was useful in circumventing problems associated with the maintenance of ZAP-70-deficient T cells and low gene transfer levels, the presence of HTLV-I precluded any biological studies. Here, we investigated a retrovirus-mediated approach for the correction of primary T cells derived from two ZAP-70-deficient patients. Upon introduction of the wild-type ZAP-70 gene, TCR-induced MAPK activation, IL-2 secretion and proliferation were restored to approximately normal levels. Importantly, this gain-of-function was associated with a selective growth advantage of gene-corrected cells, thereby indicating the feasibility of a gene therapy-based strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chan AC et al. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain Cell 1992 71: 649–662

    Article  CAS  PubMed  Google Scholar 

  2. Chan AC et al. Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TCR signaling J Immunol 1994 152: 4758–4766

    CAS  PubMed  Google Scholar 

  3. Arpaia E et al. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase Cell 1994 76: 947–958

    Article  CAS  PubMed  Google Scholar 

  4. Chan AC et al. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency Science 1994 264: 1599–1601

    Article  CAS  PubMed  Google Scholar 

  5. Elder ME et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase Science 1994 264: 1596–1599

    Article  CAS  PubMed  Google Scholar 

  6. Iwashima M et al. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases Science 1994 263: 1136–1139

    Article  CAS  PubMed  Google Scholar 

  7. Wange RL, Kong AN, Samelson LE . A tyrosine-phosphorylated 70-kDa protein binds a photoaffinity analogue of ATP and associates with both the zeta chain and CD3 components of the activated T cell antigen receptor J Biol Chem 1992 267: 11685–11688

    CAS  PubMed  Google Scholar 

  8. Chu DH, Morita CT, Weiss A . The Syk family of protein tyrosine kinases in T-cell activation and development Immunol Rev 1998 165: 167–180

    Article  CAS  PubMed  Google Scholar 

  9. Friedrich W et al. Bone marrow transplantation in severe combined immunodeficiency: potential and current limitations Immunodeficiency 1993 4: 315–322

    CAS  PubMed  Google Scholar 

  10. Fischer A et al. European experience of bone marrow transplantation for severe combined immunodeficiency Lancet 1990 336: 850–854

    Article  CAS  PubMed  Google Scholar 

  11. O'Reilly RJ et al. The use of HLA-non-identical T-cell-depleted marrow transplants for correction of severe combined immunodeficiency disease Immunodefic Rev 1989 1: 273–309

    CAS  PubMed  Google Scholar 

  12. Taylor N et al. Reconstitution of T cell receptor signaling in ZAP-70-deficient cells by retroviral transduction of the ZAP-70 gene J Exp Med 1996 184: 2031–2036

    Article  CAS  PubMed  Google Scholar 

  13. Migone TS et al. Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells Proc Natl Acad Sci USA 1998 95: 3845–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weil R et al. Altered expression of tyrosine kinases of the Src and Syk families in human T-cell leukemia virus type 1-infected T-cell lines J Virol 1999 73: 3709–3717

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Koga Y et al. Absence of transcription of lck (lymphocyte specific protein tyrosine kinase) message in IL-2-independent, HTLV-I-transformed T cell lines J Immunol 1989 142: 4493–4499

    CAS  PubMed  Google Scholar 

  16. Watanabe T . HTLV-1-associated diseases Int J Hematol 1997 66: 257–278

    Article  CAS  PubMed  Google Scholar 

  17. Noraz N et al. Alternative TCR signaling in T cells derived from ZAP-70-deficient patients expressing high levels of Syk J Biol Chem 2000 275: 15832–15838

    Article  CAS  PubMed  Google Scholar 

  18. Dardalhon V et al. Green fluorescent protein as a selectable marker of fibronectin- facilitated retroviral gene transfer in primary human T lymphocytes Hum Gene Ther 1999 10: 5–14

    Article  CAS  PubMed  Google Scholar 

  19. Heemskerk MH et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix–loop–helix factor Id3 J Exp Med 1997 186: 1597–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus Hum Gene Ther 1996 7: 1405–1413

    Article  CAS  PubMed  Google Scholar 

  21. Lam JS et al. Improved gene transfer into human lymphocytes using retroviruses with the gibbon ape leukemia virus envelope Hum Gene Ther 1996 7: 1415–1422

    Article  CAS  PubMed  Google Scholar 

  22. Bunnell BA et al. High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes Proc Natl Acad Sci USA 1995 92: 7739–7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramiro AR et al. Enhanced green fluorescent protein as an efficient reporter gene for retroviral transduction of human multipotent lymphoid precursors Hum Gene Ther 1998 9: 1103–1109

    Article  CAS  PubMed  Google Scholar 

  24. Cantrell D . T cell antigen receptor signal transduction pathways Annu Rev Immunol 1996 14: 259–274

    Article  CAS  PubMed  Google Scholar 

  25. Dunbar CE et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation Blood 1995 85: 3048–3057

    CAS  PubMed  Google Scholar 

  26. Brenner MK et al. Gene-marking to trace origin of relapse after autologous bone marrow transplantation Lancet 1993 341: 85–86

    Article  CAS  PubMed  Google Scholar 

  27. Blaese RM et al. T lymphocyte-directed gene therapy for ADA− SCID: initial trial results after 4 years Science 1995 270: 475–480

    Article  CAS  PubMed  Google Scholar 

  28. Kohn DB et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency Nature Med 1995 1: 1017–1023

    Article  CAS  PubMed  Google Scholar 

  29. Wu AG et al. Improvement of gene transduction efficiency in T lymphocytes using retroviral vectors Hum Gene Ther 1999 10: 977–982

    Article  CAS  PubMed  Google Scholar 

  30. Fehse B et al. Highly-efficient gene transfer with retroviral vectors into human T lymphocytes on fibronectin Br J Haematol 1998 102: 566–574

    Article  CAS  PubMed  Google Scholar 

  31. Pollok KE et al. High-efficiency gene transfer into normal and adenosine deaminase-deficient T lymphocytes is mediated by transduction on recombinant fibronectin fragments J Virol 1998 72: 4882–4892

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pollok KE et al. Costimulation of transduced T lymphocytes via T cell receptor–CD3 complex and CD28 leads to increased transcription of integrated retrovirus Hum Gene Ther 1999 10: 2221–2236

    Article  CAS  PubMed  Google Scholar 

  33. Candotti F et al. Retroviral-mediated gene correction for X-linked severe combined immunodeficiency Blood 1996 87: 3097–3102

    CAS  PubMed  Google Scholar 

  34. Hacein-Bey H et al. Gamma-c gene transfer into SCID X1 patients’ B-cell lines restores normal high-affinity interleukin-2 receptor expression and function Blood 1996 87: 3108–3116

    CAS  PubMed  Google Scholar 

  35. Taylor N et al. Correction of interleukin-2 receptor function in X-SCID lymphoblastoid cells by retrovirally mediated transfer of the gamma-c gene Blood 1996 87: 3103–3107

    CAS  PubMed  Google Scholar 

  36. Candotti F et al. In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction J Exp Med 1996 183: 2687–2692

    Article  CAS  PubMed  Google Scholar 

  37. Sun JY et al. Construction of retroviral vectors carrying human CD3 gamma cDNA and reconstitution of CD3 gamma expression and T cell receptor surface expression and function in a CD3 gamma-deficient mutant T cell line Hum Gene Ther 1997 8: 1041–1048

    Article  CAS  PubMed  Google Scholar 

  38. Yssel H et al. Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones J Immunol Methods 1984 72: 219–227

    Article  CAS  PubMed  Google Scholar 

  39. Cavazzana-Calvo M et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease Science 2000 288: 669–672

    Article  CAS  PubMed  Google Scholar 

  40. Kohn DB et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates Nature Med 1998 4: 775–780

    Article  CAS  PubMed  Google Scholar 

  41. Knobloch C et al. Coexistence of donor and host T lymphocytes following HLA-different bone marrow transplantation into a patient with cellular immunodeficiency and nonfunctional CD4+ T cells Transplantation 1991 52: 491–496

    Article  CAS  PubMed  Google Scholar 

  42. Taylor N et al. Differential activation of the tyrosine kinases ZAP-70 and Syk after Fc gamma RI stimulation Blood 1997 89: 388–396

    CAS  PubMed  Google Scholar 

  43. Dardalhon V et al. Highly efficient gene transfer in naive human T cells with a murine leukemia virus-based vector Blood 2000 (in press)

  44. Bordignon C et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients Science 1995 270: 470–475

    Article  CAS  PubMed  Google Scholar 

  45. de la Salle H et al. Homozygous human TAP peptide transporter mutation in HLA class I deficiency (published erratum appears in Science 1994; 266: 1464) Science 1994 265: 237–241

    Article  CAS  PubMed  Google Scholar 

  46. Raulet DH . MHC class I-deficient mice Adv Immunol 1994 55: 381–421

    Article  CAS  PubMed  Google Scholar 

  47. Spits H et al. Establishment of human T lymphocyte clones highly cytotoxic for an EBV-transformed B cell line in serum-free medium: isolation of clones that differ in phenotype and specificity J Immunol 1982 128: 95–99

    CAS  PubMed  Google Scholar 

  48. Mege D et al. Mutation of tyrosines 492/493 in the kinase domain of ZAP-70 affects multiple T-cell receptor signaling pathways J Biol Chem 1996 271: 32644–32652

    Article  CAS  PubMed  Google Scholar 

  49. Miller AD et al. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus J Virol 1991 65: 2220–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kimizuka F et al. Production and characterization of functional domains of human fibronectin expressed in Escherichia coli J Biochem (Tokyo) 1991 110: 284–291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to V Dardalhon, C Rebouissou, A Weiss, and P Jourdan for their assistance and J Clot for important insight. NN was supported by a fellowship from the AFM and MS is supported by a fellowship from the Fundacion YPF. We thank Christophe Duperray for his expertise and assistance with FACS sorting. Dr Ikunoshin Kato and Setsuko Yoshimura of Takara Shuzo Co. are generously acknowledged for providing the recombinant fibronectin fragment and for their continuing assistance. Supported by grants from the March of Dimes grant #6-FY99–406, the AFM, ARC, INSERM and CNRS (to NT), and JZKF.Ulm.CO.5 (to KS).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, M., Swainson, L., Schwarz, K. et al. Retrovirus-mediated transduction of primary ZAP-70-deficient human T cells results in the selective growth advantage of gene-corrected cells: implications for gene therapy. Gene Ther 7, 1392–1400 (2000). https://doi.org/10.1038/sj.gt.3301249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301249

Keywords

This article is cited by

Search

Quick links