Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Soluble Flt-1 gene therapy for peritoneal metastases using HVJ-cationic liposomes

Abstract

Many studies have reported a close association between VEGF and tumor angiogenesis. The aim of the present study was to evaluate the effectiveness of gene therapy against cancer, including peritoneal metastasis, using a cDNA encoding a soluble type of Flt-1, one of the VEGF receptors. In a peritoneal metastasis model of MKN45 human gastric cancer cells, mice repetitively treated with intraperitoneal injections of HVJ-Fex, a type of HVJ-cationic liposome encapsulating a plasmid expressing soluble mFlt-1, exhibited smaller disseminated foci with fewer microvessels, thus resulting in a significantly longer survival period than the control mice. In another peritoneal metastasis model using HT1080S cells, a clone of HT1080 human fibrosarcoma cells stably transfected with hVEGF, treatments with HVJ-Fex also reduced the growth of disseminated foci without ascites formation. In conclusion, this study demonstrated that the peritoneal metastases of some cancers were largely dependent on VEGF, and that the repeated intraperitoneal transduction of a soluble flt-1 gene using HVJ-cationic liposomes suppressed peritoneal metastases, thereby contributing to a longer survival period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Folkman J . Tumor angiogenesis Adv Cancer Res 1985 43: 175–203

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N, Henzel WJ . Pituitary follicular cells secrete a novel heparin-binding growth factor specific for endothelial cells Biochem Biophys Res Commun 1989 161: 851–858

    Article  CAS  PubMed  Google Scholar 

  3. Brown LF et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its adenocarcinomas of the gastrointestinal tract Cancer Res 1993 53: 4727–4735

    CAS  PubMed  Google Scholar 

  4. Plate KH et al. Upregulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis Cancer Res 1993 53: 5822–5827

    CAS  PubMed  Google Scholar 

  5. Suzuki K et al. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma Cancer Res 1996 56: 3004–3009

    CAS  PubMed  Google Scholar 

  6. Kim KJ et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo Nature 1993 362: 841–844

    Article  CAS  PubMed  Google Scholar 

  7. Millauer B et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant Nature 1994 367: 576–579

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi Y et al. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer Cancer Res 1995 55: 3694–3968

    Google Scholar 

  9. Warren RS et al. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis J Clin Invest 1995 95: 1789–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Asano M et al. Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor121 Cancer Res 1995 55: 5296–5301

    CAS  PubMed  Google Scholar 

  11. Mise M et al. Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver Hepatology 1996 23: 455–464

    Article  CAS  PubMed  Google Scholar 

  12. Cheng SY et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor Proc Natl Acad Sci USA 1996 93: 8502–8507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saleh M, Stacker SA, Wilks AF . Inhibition of growth of C6 glioma cells in vivo by antisense vascular endothelial growth factor sequence Cancer Res 1996 56: 393–401

    CAS  PubMed  Google Scholar 

  14. Mori A et al. VEGF-induced tumor angiogenesis and tumorigenicity in relation to metastasis in a HT1080 fibrosarcoma cell line Int J Cancer 1999 80: 738–743

    Article  CAS  PubMed  Google Scholar 

  15. Shibuya M et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to fms family Oncogene 1990 5: 519–524

    CAS  PubMed  Google Scholar 

  16. Terman BI et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor Biochem Biophys Res Commun 1992 187: 1579–1586

    Article  CAS  PubMed  Google Scholar 

  17. de Vries C et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor Science 1992 255: 989–991

    Article  CAS  PubMed  Google Scholar 

  18. Millauer B et al. A high affinity VEGF binding and development expression suggest FLK-1 as a major regulator of vasculogenesis and angiogenesis Cell 1993 72: 835–846

    Article  CAS  PubMed  Google Scholar 

  19. Finnerty H et al. Molecular cloning of murine FLT and FLT4 Oncogene 1993 8: 2293–2298

    CAS  PubMed  Google Scholar 

  20. Kendall RL, Thomas KA . Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor Proc Natl Acad Sci USA 1993 90: 10705–10709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roeckl W et al. Differential binding characteristics and cellular inhibition by soluble VEGF receptors 1 and 2 Exp Cell Res 1998 241: 161–170

    Article  CAS  PubMed  Google Scholar 

  22. Hiratsuka S et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice Proc Natl Acad Sci USA 1998 95: 9349–9354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin P et al. Inhibition of tumor growth by targeting endothelium using a soluble vascular endothelial growth factor receptor Cell Growth Differ 1998 9: 49–58

    CAS  PubMed  Google Scholar 

  24. Goldman CK et al. Paracrine expression of native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis and mortality rate Proc Natl Acad Sci USA 1998 95: 8795–8800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kong HL et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of flt-1 vascular endothelial growth factor receptor Hum Gene Ther 1998 9: 823–833

    Article  CAS  PubMed  Google Scholar 

  26. Aoki K et al. Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene Hum Gene Ther 1997 8: 1105–1113

    Article  CAS  PubMed  Google Scholar 

  27. Nakanishi M et al. Efficient introduction of contents of liposomes into cells using HVJ (Sendai virus) Exp Cell Res 1985 159: 399–409

    Article  CAS  PubMed  Google Scholar 

  28. Kaneda Y et al. The improved efficient method for introducing macromolecules into cells using HVJ (Sendai virus) liposomes with gangliosides Exp Cell Res 1987 173: 56–69

    Article  CAS  PubMed  Google Scholar 

  29. Saeki Y et al. Development and characterization of cationic liposomes conjugated with HVJ (Sendai virus): reciprocal effect of cationic lipid for in vitro and in vivo gene transfer Hum Gene Ther 1997 8: 2133–2141

    Article  CAS  PubMed  Google Scholar 

  30. Senger DR et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid Science 1983 219: 983–985

    Article  CAS  PubMed  Google Scholar 

  31. Morishita R et al. Single intraluminal delivery of antisense cdc2 kinase and proliferating-nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia Proc Natl Acad Sci USA 1993 90: 8474–8478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sawa Y et al. Efficiency of in vivo gene transfection into transplanted rat heart by coronary infusion of HVJ liposome Circulation 1995 92: 479–482

    Article  CAS  Google Scholar 

  33. Hirano T et al. Persistent gene expression in rat liver in vivo by repetitive transfections using HVJ-liposome Gene Therapy 1998 5: 459–464

    Article  CAS  PubMed  Google Scholar 

  34. Ueki T et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rat Nature Med 1999 5: 226–230

    Article  CAS  PubMed  Google Scholar 

  35. Boehm T, Folkman J, Browder T, O'Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance Nature 1997 390: 404–407

    Article  CAS  PubMed  Google Scholar 

  36. Folkman J . Antiangiogenic gene therapy Proc Natl Acad Sci USA 1998 95: 9064–9066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaneda Y, Iwai K, Uchida T . Increased expression of DNA cointroduced with nuclear protein in adult rat liver Science 1989 243: 375–378

    Article  CAS  PubMed  Google Scholar 

  38. Wilke M et al. Efficacy of a peptide-based gene delivery system depends on mitotic activity Gene Therapy 1996 3: 1133–1142

    CAS  PubMed  Google Scholar 

  39. Mabuchi E et al. Gene delivery by HVJ-liposome in the experimental gene therapy of murine glioma Gene Therapy 1997 4: 768–772

    Article  CAS  PubMed  Google Scholar 

  40. Kikuchi A et al. Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor Hum Gene Ther 1999 10: 947–955

    Article  CAS  PubMed  Google Scholar 

  41. Hirashima M et al. Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis Blood 1999 93: 1253–1263

    CAS  PubMed  Google Scholar 

  42. Maddon PJ et al. The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family Cell 1985 42: 93–104

    Article  CAS  PubMed  Google Scholar 

  43. Gao X, Huang L . A novel cationic liposomes reagent for efficient transfection of mammalian cells Biochem Biophys Res Commun 1991 179: 280–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr G Breier from the Max Planck Institute for Physiological and Clinical Research for providing us with the plasmid containing the full length murine flt-1 cDNA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, A., Arii, S., Furutani, M. et al. Soluble Flt-1 gene therapy for peritoneal metastases using HVJ-cationic liposomes. Gene Ther 7, 1027–1033 (2000). https://doi.org/10.1038/sj.gt.3301202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301202

Keywords

This article is cited by

Search

Quick links