Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Adenoviral vector which delivers FasL–GFP fusion protein regulated by the tet-inducible expression system

Abstract

Fas ligand (FasL) is a member of the tumor necrosis family and when bound to its receptor, Fas, induces apoptosis. It plays important roles in immune response, degenerative and lymphoproliferative diseases, development and tumorigenesis. It is also involved in generation of immune privilege sites in the eye and testis. Harnessing the power of this molecule is expected to lead to a powerful chemotherapeutic. We describe the construction and characterization of replication-deficient adenoviral vectors that express a fusion of murine FasL and green fluorescent protein (GFP). FasL-GFP retains full activity of wild-type FasL, at the same time allowing for easy visualization and quantification in both living and fixed cells. The fusion protein is under the control of a tetracycline-regulated gene expression system. Tight control of expression is achieved by creating a novel ‘double recombinant’ Ad vector, in which the tet-responsive element and the transactivator element are built into the opposite ends of the same vector to avoid enhancer interference. Expression can be conveniently regulated by tetracycline or its derivatives in a dose-dependent manner. The vector was able to deliver FasL-GFP gene to cells in vitro efficiently, and the expression level and function of the fusion protein was modulated by the concentration of doxycycline. This regulation allows us to produce high titers of the vector by inhibiting FasL expression in an apoptosis-resistant cell line. Induction of apoptosis was demonstrated in all cell lines tested. These results indicate that our vector is a potentially valuable tool for FasL-based gene therapy of cancer and for the study of FasL/Fas-mediated apoptosis and immune privilege.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Takahashi T et al. Human Fas ligand: gene structure, chromosomal location and species specificity Int Immunol 1994 6: 1567–1574

    Article  CAS  PubMed  Google Scholar 

  2. Bajorath J, Aruffo A . Prediction of the three-dimensional structure of the human Fas receptor by comparative molecular modeling J Comput Aided Mol Des 1997 11: 3–8

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe-Fukunaga R et al. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen J Immunol 1992 148: 1274–1279

    CAS  PubMed  Google Scholar 

  4. Ogasawara J et al. Lethal effect of the anti-Fas antibody in mice (published erratum appears in Nature 1993 Oct 7; 365 (6446): 568) Nature 1993 364: 806–809

    Article  CAS  PubMed  Google Scholar 

  5. Nagata S, Golstein P . The Fas death factor Science 1995 267: 1449–1456

    Article  CAS  PubMed  Google Scholar 

  6. Larsen CP et al. Fas-mediated cytotoxicity. An immunoeffector or immunoregulatory pathway in T cell-mediated immune responses? Transplantation 1995 60: 221–224

    Article  CAS  PubMed  Google Scholar 

  7. Longthorne VL, Williams GT . Caspase activity is required for commitment to Fas-mediated apoptosis EMBO J 1997 16: 3805–3812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watanabe-Fukunaga R et al. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis Nature 1992 356: 314–317

    Article  CAS  PubMed  Google Scholar 

  9. Golstein P . Fas-based T cell-mediated cytotoxicity Curr Top Microbiol Immunol 1995 198: 25–37

    CAS  PubMed  Google Scholar 

  10. Berke G . The Fas-based mechanism of lymphocytotoxicity Hum Immunol 1997 54: 1–7

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka M, Itai T, Adachi M, Nagata S . Downregulation of Fas ligand by shedding (see comments) Nature Med 1998 4: 31–36

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka M, Suda T, Takahashi T, Nagata S . Expression of the functional soluble form of human fas ligand in activated lymphocytes EMBO J 1995 14: 1129–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Green DR, Ware CF . Fas-ligand: privilege and peril (see comments) Proc Natl Acad Sci USA 1997 94: 5986–5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffith TS et al. Fas ligand-induced apoptosis as a mechanism of immune privilege (see comments) Science 1995 270: 1189–1192

    Article  CAS  PubMed  Google Scholar 

  15. Guller S . Role of Fas ligand in conferring immune privilege to non-lymphoid cells Ann NY Acad Sci 1997 828: 268–272

    Article  CAS  PubMed  Google Scholar 

  16. Hahne M et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape (see comments) Science 1996 274: 1363–1366

    Article  CAS  PubMed  Google Scholar 

  17. Strand S et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells – a mechanism of immune evasion? (see comments) Nature Med 1996 2: 1361–1366

    Article  CAS  PubMed  Google Scholar 

  18. Saas P et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 1997 99: 1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Srinivasan A et al. Bcl-xL functions downstream of caspase-8 to inhibit Fas- and tumor necrosis factor receptor 1-induced apoptosis of MCF7 breast carcinoma cells J Biol Chem 1998 273: 4523–4529

    Article  CAS  PubMed  Google Scholar 

  20. Owen-Schaub LB et al. Soluble Fas/APO-1 in tumor cells: a potential regulator of apoptosis? Cancer Lett 1995 94: 1–8

    Article  CAS  PubMed  Google Scholar 

  21. Cascino I, Papoff G, Eramo A, Ruberti G . Soluble Fas/Apo-1 splicing variants and apoptosis Front Biosci 1996 1: d12–18

    Article  CAS  PubMed  Google Scholar 

  22. Judge TA et al. Utility of adenoviral-mediated Fas ligand gene transfer to modulate islet allograft survival Transplantation 1998 66: 426–434

    Article  CAS  PubMed  Google Scholar 

  23. Sata M et al. Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response Proc Natl Acad Sci USA 1998 95: 1213–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swenson KM et al. Fas ligand gene transfer to renal allografts in rats: effects on allograft survival Transplantation 1998 65: 155–160

    Article  CAS  PubMed  Google Scholar 

  25. Zhang HG et al. Induction of specific T-cell tolerance by adenovirus-transfected, Fas ligand-producing antigen presenting cells (see comments) Nat Biotechnol 1998 16: 1045–1049

    Article  CAS  PubMed  Google Scholar 

  26. Zhang HG et al. Application of a Fas ligand encoding a recombinant adenovirus vector for prolongation of transgene expression J Virol 1998 72: 2483–2490

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Arai H, Gordon D, Nabel EG, Nabel GJ . Gene transfer of Fas ligand induces tumor regression in vivo Proc Natl Acad Sci USA 1997 94: 13862–13867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shiner M et al. Are intraepithelial lymphocytes in celiac mucosa responsible for inducing programmed cell death (apoptosis) in enterocytes? Histochemical demonstration of perforins in cytoplasmic granules of intraepithelial lymphocytes J Pediatr Gastroenterol Nutr 1998 27: 393–396

    Article  CAS  PubMed  Google Scholar 

  29. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters Proc Natl Acad Sci USA 1992 89: 5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muruve DA et al. Adenovirus-mediated expression of Fas ligand induces hepatic apoptosis after systemic administration and apoptosis of ex vivo-infected pancreatic islet allografts and isografts Hum Gene Ther 1997 8: 955–963

    Article  CAS  PubMed  Google Scholar 

  31. Harding TC et al. Switching transgene expression in the brain using an adenoviral tetracycline-regulatable system (see comments) Nat Biotechnol 1998 16: 553–555

    Article  CAS  PubMed  Google Scholar 

  32. Hearing P, Shenk T . The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element Cell 1983 33: 695–703

    Article  CAS  PubMed  Google Scholar 

  33. Shi Q, Wang Y, Worton R . Modulation of the specificity and activity of a cellular promoter in an adenoviral vector Hum Gene Ther 1997 8: 403–410

    Article  CAS  PubMed  Google Scholar 

  34. Han J et al. The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein Genes Dev 1996 10: 461–477

    Article  CAS  PubMed  Google Scholar 

  35. Larregina AT et al. FasL induces Fas/Apo1-mediated apoptosis in human embryonic kidney 293 cells routinely used to generate E1-deleted adenoviral vectors Gene Therapy 1998 5: 563–568

    Article  CAS  PubMed  Google Scholar 

  36. Tewari M, Dixit VM . Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product J Biol Chem 1995 270: 3255–3260

    Article  CAS  PubMed  Google Scholar 

  37. Kang SM et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction (see comments) Nature Med 1997 3: 738–743

    Article  CAS  PubMed  Google Scholar 

  38. Shinoura N et al. Apoptosis by retrovirus- and adenovirus-mediated gene transfer of Fas ligand to glioma cells: implications for gene therapy (in process citation) Hum Gene Ther 1998 9: 1983–1993

    Article  CAS  PubMed  Google Scholar 

  39. Kang SM, Lin Z, Ascher NL, Stock PG . Fas ligand expression on islets as well as multiple cell lines results in accelerated neutrophilic rejection Transplant Proc 1998 30: 538–543

    Article  CAS  PubMed  Google Scholar 

  40. Okuyama T et al. Efficient Fas-ligand gene expression in rodent liver after intravenous injection of a recombinant adenovirus by the use of a Cre-mediated switching system Gene Therapy 1998 5: 1047–1053

    Article  CAS  PubMed  Google Scholar 

  41. Tanaka M et al. Fas ligand in human serum Nature Med 1996 2: 317–322

    Article  CAS  PubMed  Google Scholar 

  42. Tewari M, Beidler DR, Dixit VM . CrmA-inhibitable cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein during Fas- and tumor necrosis factor-induced apoptosis J Biol Chem 1995 270: 18738–18741

    Article  CAS  PubMed  Google Scholar 

  43. Moreno MB, Memon SA, Zacharchuk CM . Apoptosis signaling pathways in normal T cells: differential activity of Bcl-2 and IL-1beta-converting enzyme family protease inhibitors on glucocorticoid- and Fas-mediated cytotoxicity J Immunol 1996 157: 3845–3849

    CAS  PubMed  Google Scholar 

  44. Memon SA, Moreno MB, Petrak D, Zacharchuk CM . Bcl-2 blocks glucocorticoid- but not Fas- or activation-induced apoptosis in a T cell hybridoma J Immunol 1995 155: 4644–4652

    CAS  PubMed  Google Scholar 

  45. Zhang G, Gurtu V, Kain SR . An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells Biochem Biophys Res Commun 1996 227: 707–711

    Article  CAS  PubMed  Google Scholar 

  46. Huang MM, Hearing P . The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex Genes Dev 1989 3: 1699–1710

    Article  CAS  PubMed  Google Scholar 

  47. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr James Norris (Department of Microbiology and Immunology, Medical University of South Carolina) for his advice and assistance in the preparation of this manuscript. This study was supported in part by Grants for American Cystic Fibrosis Foundation: DONG96PO, DONG97PO and Grants from NIH: DK46177 and DK53217.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinchik, S., Ding, R., Qiu, A. et al. Adenoviral vector which delivers FasL–GFP fusion protein regulated by the tet-inducible expression system. Gene Ther 7, 875–885 (2000). https://doi.org/10.1038/sj.gt.3301172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301172

Keywords

This article is cited by

Search

Quick links