Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Millennium Review
  • Published:

Stem cell therapy and gene transfer for regeneration

Abstract

The committed stem and progenitor cells have been recently isolated from various adult tissues, including hematopoietic stem cell, neural stem cell, mesenchymal stem cell and endothelial progenitor cell. These adult stem cells have several advantages as compared with embryonic stem cells as their practical therapeutic application for tissue regeneration. In this review, we discuss the promising gene therapy application of adult stem and progenitor cells in terms of modifying stem cell potency, altering organ property, accelerating regeneration and forming expressional organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH . Establishment in culture of pluripotent cells from mouse embryos Nature 1981 292: 154–156

    Article  CAS  PubMed  Google Scholar 

  2. Martin GR . Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma cells Proc Natl Acad Sci USA 1981 78: 7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smithies O et al. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination Nature 1985 317: 230–234

    Article  CAS  PubMed  Google Scholar 

  4. Cawpecchi MR . Altering the genome by homologous recombination Science 1989 244: 1288–1292

    Article  Google Scholar 

  5. Kennedy M et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis Nature 1997 386: 488–493

    Article  CAS  PubMed  Google Scholar 

  6. Hole N, Graham GJ, Menzel U, Ansell JD . A limited temporal window for the derivation of multilineage repopulating hematopoietic progenitors during embryonal stem cell differentiation in vitro Blood 1996 88: 1266–1276

    CAS  PubMed  Google Scholar 

  7. Klug MG, Soonpaa MH, Koh GY, Field LJ . Genetically selected cardiomyocytes from differentiating embronic stem cells from stable intracardiac grafts J Clin Invest 1996 98: 216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deacon T et al. Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation Exp Neurol 1998 149: 28–41

    Article  CAS  PubMed  Google Scholar 

  9. Brustle O et al. In vitro-generated neural precursors participate in mammalian brain development Proc Natl Acad Sci USA 1997 94: 14809–14814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Potocnik AJ, Kohler H, Eichmann K . Hemato-lymphoid in vivo reconstitution potential of subpopulations derived from in vitro differentiated embryonic stem cells Proc Natl Acad Sci USA 1997 94: 10295–10300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomas JA et al. Embryonic stem cell lines derived from human blastocysts Science 1998 282: 1145–1147

    Article  Google Scholar 

  12. Shamblott MJ et al. Derivation of pluripotent stem cells from cultured human primordial germ cells Proc Natl Acad Sci USA 1998 95: 13726–13731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gage FH . Cell therapy Nature 1998 392: 18–24

    CAS  PubMed  Google Scholar 

  14. Evans JT, Kelly PF, O'Neill E, Garcia JV . Human cord blood CD34+CD38− cell transduction via lentivirus-based gene transfer vectors Hum Gene Ther 1999 10: 1479–1489

    Article  CAS  PubMed  Google Scholar 

  15. Asahara T et al. Isolation of putative progenitor endothelial cells for angiogenesis Science 1997 275: 965–967

    Article  Google Scholar 

  16. Kalka C et al. Administration of culture-expanded endothelial progenitor cells (EPC) augments therapeutic neovascularization Circulation 1998 98: I-455 (Abstr.)

    Google Scholar 

  17. Flax JD et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes Nat Biotech 1998 16: 1033–1039

    Article  CAS  Google Scholar 

  18. Lindvall O et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease Science 1990 247: 574–577

    Article  CAS  PubMed  Google Scholar 

  19. Schuler JJ et al. Efficacy of prostaglandin E1 in the treatment of lower extremity ischemic ulcers secondary to peripheral vascular occlusive disease J Vasc Surg 1984 1: 160–170

    CAS  PubMed  Google Scholar 

  20. Karlsson S . Treatment of genetic defects in hematopoietic cell function by gene transfer Blood 1991 78: 2481–2492

    CAS  PubMed  Google Scholar 

  21. Dunbar CE et al. Retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with Gaucher disease: in vivo detection of transduced cells without myeloablation Hum Gene Ther 1998 9: 2629–2640

    Article  CAS  PubMed  Google Scholar 

  22. Wong-Staal F, Poeschla EM, Looney DJ . A controlled phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA Hum Gene Ther 1998 9: 2407–2425

    Article  CAS  PubMed  Google Scholar 

  23. Reisner Y, Segall H . Hematopoietic stem cell transplantation for cancer therapy Curr Opin Immunol 1995 7: 687–693

    Article  CAS  PubMed  Google Scholar 

  24. Cowan KH et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients Clin Cancer Res 1999 5: 1619–1628

    CAS  PubMed  Google Scholar 

  25. Asahara T et al. Gene therapy of endothelial progenitor cell for vascular development in severe ischemic disease Circulation 1999 100: I-480 (Abstr.)

    Google Scholar 

  26. Ziegler BL et al. KDR receptor: a key marker defining hematopoietic stem cells Science 1999 285: 1553–1558

    Article  CAS  PubMed  Google Scholar 

  27. Hao QL et al. A functional comparison of CD34+ CD38− cells in cord blood and bone marrow Blood 1995 86: 3745–3753

    CAS  PubMed  Google Scholar 

  28. Humeau L et al. Successful reconstitution of human hematopoiesis in the SCID-hu mouse by genetically modified, highly enriched progenitors isolated from fetal liver Blood 1997 90: 3496–3506

    CAS  PubMed  Google Scholar 

  29. Blaese RM et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years Science 1995 270: 475–480

    Article  CAS  PubMed  Google Scholar 

  30. Folkman J, Shing Y . Angiogenesis J Biol Chem 1992 267: 10931–10934

    CAS  PubMed  Google Scholar 

  31. Risau W . Mechanisms of angiogenesis Nature 1997 386: 671–674.

    Article  CAS  PubMed  Google Scholar 

  32. Ojeifo JO et al. Angiogenesis-directed implantation of genetically modified endothelial cells in mice Cancer Res 1995 55: 2240–2244

    CAS  PubMed  Google Scholar 

  33. Asahara T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization Circ Res 1999 85: 221–228

    Article  CAS  PubMed  Google Scholar 

  34. Shi Q et al. Evidence for circulating bone marrow-derived endothelial cells Blood 1998 92: 362–367

    CAS  PubMed  Google Scholar 

  35. Risau W, Flamme I . Vasculogenesis Ann Rev Cell Dev Biol 1995 11: 73–91

    Article  CAS  Google Scholar 

  36. Hatzopoulos AK et al. Isolation and characterization of endothelial progenitor cells from mouse embyros Development 1998 125: 1457–1468

    CAS  PubMed  Google Scholar 

  37. Takahashi T et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization Nature Med 1999 5: 434–438

    Article  CAS  PubMed  Google Scholar 

  38. Asahara T et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells EMBO J 1999 18: 3964–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Groves AK et al. Repair of demyelinated lesions by transplantation of purified 0–2A progenitor cells Nature 1993 362: 453–455.

    Article  CAS  PubMed  Google Scholar 

  40. Sabate O et al. Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses Nat Genet 1995 9: 256–260

    Article  CAS  PubMed  Google Scholar 

  41. Andsberg G et al. Amelioration of ischaemia-induced neuronal death in the rat striatum by NGF-secreting neural stem cells Eur J Neurosci 1998 10: 2026–2036

    Article  CAS  PubMed  Google Scholar 

  42. Whittemore SR, Eaton MJ, Onifer SM . Gene therapy and the use of stem cells for central nervous system regeneration Adv Neurol 1997 72: 113–119

    CAS  PubMed  Google Scholar 

  43. Clark BR, Keating A . Biology of bone marrow stroma Ann NY Acad Sci 1995 770: 70–78

    Article  CAS  PubMed  Google Scholar 

  44. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues Science 1997 276: 71–74

    Article  CAS  PubMed  Google Scholar 

  45. Hurwitz DR et al. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells Hum Gene Ther 1997 8: 137–156

    Article  CAS  PubMed  Google Scholar 

  46. Cherington V et al. Retroviral vector-modified bone marrow stromal cells secrete biologically active factor IX in vitro and transiently deliver therapeutic levels of human factor IX to the plasma of dogs after reinfusion Hum Gene Ther 1998 9: 1397–1407

    Article  CAS  PubMed  Google Scholar 

  47. Horwitz EM et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta Nature Med 1999 5: 309–313

    Article  CAS  PubMed  Google Scholar 

  48. Lou J, Xu F, Merkel K, Manske P . Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo J Orthop Res 1999 17: 43–50

    Article  CAS  PubMed  Google Scholar 

  49. Anklesaria P et al. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation Proc Natl Acad Sci USA 1987 84: 7681–7685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller DG, Adam MA, Miller AD . Gene transfer by retroviral vectors occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Havenga M, Hoogerbrugge P, Valerio D, van Es HH . Retroviral stem cell gene therapy Stem Cells 1997 15: 162–179

    Article  CAS  PubMed  Google Scholar 

  52. Chu P, Lutzko C, Stewart AK, Dube ID . Retrovirus-mediated gene transfer into human hematopoietic stem cells J Mol Med 1998 76: 184–192

    Article  CAS  PubMed  Google Scholar 

  53. Emi N, Friedmann T, Yee JK . Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus J Virol 1991 65: 1201–1207

    Google Scholar 

  54. Kavanaugh MP et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic muring retrovirus are inducible sodium-dependent phosphate symporters Proc Natl Acad Sci USA 1994 91: 7071–7075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263–267

    Article  CAS  PubMed  Google Scholar 

  56. Case SS et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors Proc Natl Acad Sci USA 1999 96: 2988–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goodman S et al. Recombinant adeno-associated virus-mediated gene transfer into hematopoietic progenitor cells Blood 1994 84: 1492–1500

    CAS  PubMed  Google Scholar 

  58. Chatterjee S et al. Transduction of primitive human marrow and cord blood-derived hematopoietic progenitor cells with adeno-associated virus vectors Blood 1999 93: 1882–1894

    CAS  PubMed  Google Scholar 

  59. Watanabe T et al. Gene transfer into human bone marrow hematopoietic cells mediated by adenovirus vectors Blood 1996 87: 5032–5039

    CAS  PubMed  Google Scholar 

  60. Persons DA et al. Use of the green fluorescent protein as a marker to identify and track genetically modified hematopoietic cells Nature Med 1998 4: 1201–1205

    Article  CAS  PubMed  Google Scholar 

  61. Sorrentino BP et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1 Science 1992 257: 99–103

    Article  CAS  PubMed  Google Scholar 

  62. Allay JA et al. In vivo selection of retrovirally transduced hematopoietic stem cells Nature Med 1998 4: 1136–1143

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asahara, T., Kalka, C. & Isner, J. Stem cell therapy and gene transfer for regeneration. Gene Ther 7, 451–457 (2000). https://doi.org/10.1038/sj.gt.3301142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301142

Keywords

This article is cited by

Search

Quick links