Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins

Abstract

Catheter-based percutaneous transluminal gene delivery (PTGD) into the coronary artery still falls behind the expectations of an efficient myocardial gene delivery system. In this study gene delivery was applied by selective pressure-regulated retroinfusion through the coronary veins to prolong adhesion of replication defective adenovirus within the targeted myocardium. Adenoviral vectors consisted either of luciferase (Ad.rsv-Luc) or β-galactosidase (Ad.rsv-βGal) reporter gene under control of an unspecific promotor derived from the Rous sarcoma virus (RSV). In this pig model, selective retrograde gene delivery into the anterior cardiac vein during a brief period of ischemia substantially increased reporter gene expression in the targeted myocardium (LAD region) compared with antegrade delivery as a control. Repeated retrograde delivery during two periods of brief ischemia resulted in a more homogeneous transmural expression predominantly observed in cardiomyocytes (X-gal-staining). In the nontargeted myocardium (CX region) there was no evidence for adenoviral transfection. From our data we infer that selective pressure-regulated retroinfusion is a promising approach for efficient percutaneous transluminal gene delivery to the myocardium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Guzman RJ et al. Efficient gene transfer into myocardium by direct injection of adenovirus vectors Circ Res 1993 73: 1202–1207

    Article  CAS  PubMed  Google Scholar 

  2. French BA, Mazur W, Geske RS, Bolli R . Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors Circulation 1994 90: 2414–2424

    Article  CAS  PubMed  Google Scholar 

  3. French BA et al. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis Circulation 1994 90: 2402–2413

    Article  CAS  PubMed  Google Scholar 

  4. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A . Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes Circulation 1997 95: 423–429

    Article  CAS  PubMed  Google Scholar 

  5. Franz WM, Rothmann R, Frey N, Katus HA . Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters Cardiovasc Res 1997 35: 560–566

    Article  CAS  PubMed  Google Scholar 

  6. Magovern CJ et al. Direct in vivo gene transfer to canine myocardium using a replication-deficient adenovirus vector Ann Thorac Surg 1996 62: 425–433

    Article  CAS  PubMed  Google Scholar 

  7. Feldman LJ, Steg G . Optimal techniques for arterial gene transfer Cardiovasc Res 1997 35: 391–404

    Article  CAS  PubMed  Google Scholar 

  8. Steg PG et al. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector Circulation 1994 90: 1648–1656

    Article  CAS  PubMed  Google Scholar 

  9. Barr E et al. Efficient catheter-mediated gene transfer into the heart using replication-deficient adenovirus Gene Therapy 1994 1: 51–58

    CAS  PubMed  Google Scholar 

  10. Lamping KG et al. Intrapericardial administration of adenovirus for gene transfer Am J Physiol 1997 272: H310–317

    Article  CAS  PubMed  Google Scholar 

  11. March KL et al. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors Clin Cardiol 1999 22: I23–I29

    Article  CAS  PubMed  Google Scholar 

  12. Giordano FJ et al. Adenovirus-mediated gene transfer reconstitutes depressed sarcoplasmic reticulum Ca2+-ATPase levels and shortens prolonged cardiac myocyte Ca2+ transients Circulation 1997 96: 400–403

    Article  CAS  PubMed  Google Scholar 

  13. Rothmann T et al. Heart muscle-specific gene expression using replication defective recombinant adenovirus Gene Therapy 1996 3: 919–926

    CAS  PubMed  Google Scholar 

  14. Hatori N, Sjoquist PO, Regardh C, Ryden L . Pharmacokinetic analysis of coronary sinus retroinfusion in pigs. Ischemic myocardial concentrations in the left circumflex arterial area using metoprolol as a tracer Cardiovasc Drugs Ther 1991 5: 1005–1010

    Article  CAS  PubMed  Google Scholar 

  15. Ryden L et al. Pharmacokinetic analysis of coronary venous retroinfusion: a comparison with anterograde coronary artery drug administration using metoprolol as a tracer JACC 1991 18: 603–612

    Article  CAS  PubMed  Google Scholar 

  16. Haga Y et al. Ischemic and nonischemic tissue concentrations of felodipine after coronary venous retroinfusion during myocardial ischemia and reperfusion: an experimental study in pigs J Cardiovasc Pharmacol 1994 24: 298–302

    Article  CAS  PubMed  Google Scholar 

  17. von Degenfeld G, Giehrl W, Boekstegers P . Targeting of dobutamine to ischemic myocardium without systemic effects by selective suction and pressure-regulated retroinfusion Cardiovasc Res 1997 35: 233–240

    Article  CAS  PubMed  Google Scholar 

  18. Boekstegers P, von Degenfeld G, Giehrl W, Steinbeck G . Selective suction and pressure-regulated retroinfusion: an effective and safe approach to retrograde protection against myocardial ischemia in patients undergoing normal and high risk percutaneous transluminal coronary angioplasty JACC 1998 31: 1525–1523

    Article  CAS  PubMed  Google Scholar 

  19. Boekstegers P et al. Preservation of regional myocardial function and myocardial oxygen tension during acute ischemia in pigs: comparison of selective synchronized suction and retroinfusion of coronary veins (SSR) to synchronized coronary venous retroperfusion (SRP) J Am Coll Cardiol 1994 23: 459–469

    Article  CAS  PubMed  Google Scholar 

  20. Wright MJ et al. β-Galactosidase staining following intracoronary infusion of cationic liposomes in the in vivo rabbit heart is produced by microinfarction rather than effective gene transfer: a cautionary tale Gene Therapy 1998 5: 301–308

    Article  CAS  PubMed  Google Scholar 

  21. Donahue JK et al. Ultrarapid, highly efficient viral gene transfer to the heart Proc Natl Acad Sci USA 1997 94: 4664–4668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Donahue JK et al. Acceleration of widespread adenoviral gene transfer to intact hearts by coronary perfusion with low calcium and serotonin Gene Therapy 1998 5: 630–634

    Article  CAS  PubMed  Google Scholar 

  23. Pernow J et al. The protective effect of L-arginine on myocardial injury and endothelial function following ischemia and reperfusion in the pig Eur Heart J 1994 15: 1712–1719

    Article  CAS  PubMed  Google Scholar 

  24. Franz WM et al. Heart-specific targeting of firefly luciferase by the myosin light chain-2 promotor and developmental regulation in transgenic mice Circ Res 1993 73: 629–638

    Article  CAS  PubMed  Google Scholar 

  25. Griscelli F et al. Expression from cardiomyocyte-specific promoter after adenovirus-mediated gene transfer in vitro and in vivo CR Acad Sci III 1997 320: 103–112

    Article  CAS  Google Scholar 

  26. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28kb of DNA independently expressing both full-length dysthrophin and β-galactosidase Proc Natl Acad Sci USA 1996 93: 5731–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parks RJ et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packing signal Proc Natl Acad Sci USA 1996 93: 13565–13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fox JC . Cardiovascular gene therapy: current concepts Ther Drug Monit 1996 18: 410–422

    Article  CAS  PubMed  Google Scholar 

  29. Melillo G et al. Gene therapy for collateral development Cardiovasc Res 1997 35: 480–490

    Article  CAS  PubMed  Google Scholar 

  30. von Degenfeld G, Heinrich D, Giehrl W, Boekstegers P . Comparison of Pura-Vario and Palmaz-Schatz stents following implantation using normal and high pressure in pigs: immediate and late results assessed by 3-dimensional IVUS Z Kardiol 1999 (in press)

  31. Bradford MM . A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 1976 72: 248–254

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boekstegers, P., von Degenfeld, G., Giehrl, W. et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 7, 232–240 (2000). https://doi.org/10.1038/sj.gt.3301079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301079

Keywords

This article is cited by

Search

Quick links