Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Cell-Based Therapy
  • Published:

Cell-Based Therapy

Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model

Abstract

To develop a cellular vehicle able to reach systemically disseminated areas of angiogenesis, we sought to exploit the natural tropism of circulating endothelial progenitor cells (EPCs). Primate CD34+ EPCs were genetically modified with high efficiency and minimal toxicity using a non-replicative herpes virus vector. These EPCs localized in a skin autograft model of angiogenesis in rhesus monkeys, and sustained the expression of a reporter gene for several weeks while circulating in the blood. In animals infused with autologous CD34+ EPCs transduced with a thymidine kinase-encoding herpes virus, skin autografts and subcutaneous Matrigel pellets impregnated with vascular growth factors underwent necrosis or accelerated regression after administration of ganciclovir. Importantly, the whole intervention was perfectly well tolerated. The accessibility, easy manipulation, lack of immunogenicity of the autologous CD34+ cell vehicles, and tropism for areas of angiogenesis render autologous CD34+ circulating endothelial progenitors as ideal candidates for exploration of their use as cellular vehicles when systemic gene delivery to those areas is required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kong HL, Crystal RG . Gene therapy strategies for tumor antiangiogenesis J Natl Cancer Inst 1998 90: 273–286

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J . Antiangiogenic gene therapy Proc Natl Acad Sci USA 1998 95: 9064–9066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kluth D . Inflammation, genes and gene therapy JR Coll Phys Lond 1998 32: 167–170

    CAS  Google Scholar 

  4. Knechtle SJ, Zhai Y, Fechner J . Gene therapy in transplantation Transplant Immunol 1996 4: 257–264

    Article  CAS  Google Scholar 

  5. Anderson WF . Human gene therapy Nature 1998 392: 25–30

    Article  CAS  PubMed  Google Scholar 

  6. Bilbao G, Contreras JL, Gomez-Navarro J, Curiel DT . Improving adenoviral vectors for cancer gene therapy Tumor Targeting 1998 3: 59–79

    CAS  Google Scholar 

  7. Thurston G et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice J Clin Invest 1998 101: 1401–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kay MA, Liu D, Hoogerbrugge PM . Gene therapy Proc Natl Acad Sci USA 1997 94: 12744–12746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vrancken PM, Perkins AL, Kay MA . Method for multiple portal vein infusions in mice: quantitation of adenovirus-mediated hepatic gene transfer Biotechniques 1996 20: 278–285

    Article  Google Scholar 

  10. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration Hum Gene Ther 1997 8: 37–44

    Article  CAS  PubMed  Google Scholar 

  11. Kafri T et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy Proc Natl Acad Sci USA 1998 95: 11377–11382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paillard F . Mesothelial cells: the panacea for ex vivo gene therapy? Hum Gene Ther 1997 8: 1839–1840

    Article  CAS  PubMed  Google Scholar 

  13. Gage FH . Cell therapy Nature 1998 392: 18–24

    CAS  PubMed  Google Scholar 

  14. Smith A . Cell therapy: in search of pluripotency Curr Biol 1998 8: R802–R804

    Article  CAS  PubMed  Google Scholar 

  15. Rancourt C et al. Endothelial cell vehicles for delivery of cytotoxic genes as a gene therapy approach for carcinoma of the ovary Clin Cancer Res 1998 4: 265–270

    CAS  PubMed  Google Scholar 

  16. Asahara T et al. Isolation of putative progenitor endothelial cells for angiogenesis Science 1997 275: 964–967

    Article  CAS  PubMed  Google Scholar 

  17. Shi Q et al. Evidence for circulating bone marrow-derived endothelial cells Blood 1998 92: 362–367

    CAS  PubMed  Google Scholar 

  18. Stump MM, Jordan GLJ, DeBakey ME, Halpert B . Endothelium grown from circulating blood on isolated intravascular Dacron hub Am J Pathol 1963 43: 361–363

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez IE, Vermeulen F, Ehrenfeld WK . Relations between circulating blood and pathogenesis of atherosclerosis Isr J Med Sci 1969 5: 648–651

    CAS  PubMed  Google Scholar 

  20. Kennedy LJJ, Weissman IL . Dual origin of intimal cells in cardiac-allograft arteriosclerosis New Engl J Med 1971 285: 884–887

    Article  PubMed  Google Scholar 

  21. Frazier OH, Baldwin RT, Eskin SG, Duncan JM . Immunochemical identification of human endothelial cells on the lining of a ventricular assist device Tex Heart Inst J 1993 20: 78–82

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Scott SM, Barth MG, Gaddy LR, Ahl ET Jr . The role of circulating cells in the healing of vascular prostheses J Vasc Surg 1994 19: 585–593

    Article  CAS  PubMed  Google Scholar 

  23. Shi Q et al. Proof of fallout endothelialization of impervious Dacron grafts in the aorta and inferior vena cava of the dog J Vasc Surg 1994 20: 546–556

    Article  CAS  PubMed  Google Scholar 

  24. Rafii S et al. Characterization of hematopoietic cells arising on the textured surface of left ventricular assist devices Ann Thorac Surg 1995 60: 1627–1632

    Article  CAS  PubMed  Google Scholar 

  25. Young PE, Baumhueter S, Lasky LA . The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development Blood 1995 85: 96–105

    CAS  PubMed  Google Scholar 

  26. Kabrun N et al. Flk-1 expression defines a population of early embryonic hematopoietic precursors Development 1997 124: 2039–2048

    CAS  PubMed  Google Scholar 

  27. Eichmann A et al. Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2 Proc Natl Acad Sci USA 1997 94: 5141–5146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shalaby F et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis Cell 1997 89: 981–990

    Article  CAS  PubMed  Google Scholar 

  29. Caprioli A et al. Blood-borne seeding by hematopoietic and endothelial precursors from the allantois Proc Natl Acad Sci USA 1998 95: 1641–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi K et al. A common precursor for hematopoietic and endothelial cells Development 1998 125: 725–732

    CAS  PubMed  Google Scholar 

  31. Hatzopoulos AK et al. Isolation and characterization of endothelial progenitor cells from mouse embryos Development 1998 125: 1457–1468

    CAS  PubMed  Google Scholar 

  32. Nishikawa SI et al. Progressive lineage analysis by cell sorting and culture identifies FLK1 + VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages Development 1998 125: 1747–1757

    CAS  PubMed  Google Scholar 

  33. Labastie MC et al. Molecular identity of hematopoietic precursor cells emerging in the human embryo Blood 1998 92: 3624–3635

    CAS  PubMed  Google Scholar 

  34. Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N . Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis Blood 1999 93: 1253–1263

    CAS  PubMed  Google Scholar 

  35. Cleaver O, Krieg PA . VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus Development 1998 125: 3905–3914

    CAS  PubMed  Google Scholar 

  36. Shalaby F et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice Nature 1995 376: 62–66

    Article  CAS  PubMed  Google Scholar 

  37. Medin JA, Karlsson S . Viral vectors for gene therapy of hematopoietic cells Immunotechnology 1997 3: 3–19

    Article  CAS  PubMed  Google Scholar 

  38. Dunbar CE et al. Transduction of hematopoietic stem cells in humans and in nonhuman primates Stem Cells 1997 15 (Suppl 1): 135–139; discussion 139–140

    Article  PubMed  Google Scholar 

  39. Havenga M, Hoogerbrugge P, Valerio D, van Es HH . Retroviral stem cell gene therapy Stem Cells 1997 15: 162–179

    Article  CAS  PubMed  Google Scholar 

  40. Hennemann B et al. Optimization of retroviral-mediated gene transfer to human NOD/SCID mouse repopulating cord blood cells through a systematic analysis of protocol variables Exp Hematol 1999 27: 817–825

    Article  CAS  PubMed  Google Scholar 

  41. Douglas JT et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities Nat Biotechnol 1999 17: 470–475

    Article  CAS  PubMed  Google Scholar 

  42. Case SS et al. Stable transduction of quiescent CD34 (+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors Proc Natl Acad Sci USA 1999 96: 2988–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chatterjee S et al. Transduction of primitive human marrow and cord blood-derived hematopoietic progenitor cells with adeno-associated virus vectors Blood 1999 93: 1882–1894

    CAS  PubMed  Google Scholar 

  44. Miyoshi H et al. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors Science 1999 283: 682–686

    Article  CAS  PubMed  Google Scholar 

  45. Briones J et al. Retroviral gene transfer into human hematopoietic cells: an in vitro kinetic study Haematologica 1999 84: 483–488

    CAS  PubMed  Google Scholar 

  46. Tisdale JF et al. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability Blood 1998 92: 1131–1141

    CAS  PubMed  Google Scholar 

  47. Dilloo D et al. A novel herpes vector for the high-efficiency transduction of normal and malignant human hematopoietic cells Blood 1997 89: 119–127

    CAS  PubMed  Google Scholar 

  48. Watanabe T et al. Gene transfer into human bone marrow hematopoietic cells mediated by adenovirus vectors Blood 1996 87: 5032–5039

    CAS  PubMed  Google Scholar 

  49. Neering SJ et al. Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors Blood 1996 88: 1147–1155

    CAS  PubMed  Google Scholar 

  50. Seth P et al. Adenovirus-mediated gene transfer to human breast tumor cells: an approach for cancer gene therapy and bone marrow purging Cancer Res 1996 56: 1346–1351

    CAS  PubMed  Google Scholar 

  51. Marini FC, Zhang X, Trapnell B, Andreeff M . Inefficient infection of primitive hematopoietic precursors cells (CD34+) using CMV driven adenoviral vectors (ad-v) Blood 1996 88 (Suppl 1): 292b

    Google Scholar 

  52. Garcia Sanchez F et al. Use of a safety recombinant adenovirus vector for selective bone marrow purging carrying the chemosensitization gene cytosine deaminase International Society of Hematology, Charlottesville, VA, Carden Jennings 1996 Abstr. 619: 1138

  53. Fu SQ, Garcia Sanchez F, Chung I, Deisseroth AB . Adenoviral vectors and hematopoietic cells Blood 1997 89: 1460–1467

    CAS  PubMed  Google Scholar 

  54. Frey BM et al. High-efficiency gene transfer into ex vivo expanded human hematopoietic progenitors and precursor cells by adenovirus vectors Blood 1998 91: 2781–2792

    CAS  PubMed  Google Scholar 

  55. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Springett GM et al. Infection efficiency of T lymphocytes with amphotropic retroviral vectors is cell cycle dependent J Virol 1989 63: 3865–3869

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huard J et al. Gene transfer to muscle using herpes simplex virus-based vectors Neuromusc Disord 1997 7: 299–313

    Article  CAS  PubMed  Google Scholar 

  58. Rachamim N et al. Potential role of CD34 stem cells in tolerance induction Transplant Proc 1997 29: 1935–1936

    Article  CAS  PubMed  Google Scholar 

  59. Fiering SN et al. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs Cytometry 1991 12: 291–301

    Article  CAS  PubMed  Google Scholar 

  60. Krisky DM et al. Rapid method for construction of recombinant HSV gene transfer vectors Gene Therapy 1997 4: 1120–1125

    Article  CAS  PubMed  Google Scholar 

  61. Krisky DM et al. Deletion of multiple immediate–early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons Gene Therapy 1998 5: 1593–1603

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant AI-94012 to Judith M Thomas. We thank Clement Asiedu and Zhi Huang for their help with flow cytometry, and Arabella Tilden for her assistance with CD34+ processing and storage. Last but not least, Nat Borden took care of the rhesus animals with utmost ability.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Navarro, J., Contreras, J., Arafat, W. et al. Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Ther 7, 43–52 (2000). https://doi.org/10.1038/sj.gt.3301054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301054

Keywords

This article is cited by

Search

Quick links