Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Persistent expression of canine factor IX in hemophilia B canines

Abstract

We previously demonstrated that direct intramuscular injection of recombinant adeno-associated virus (rAAV) carrying the human FIX (hFIX) cDNA can safely be administered to hemophilic B canines and express human factor IX protein; however, the functional activity of the hFIX protein could not be assessed due to anti-human FIX antibody (inhibitor) formation. To test the therapeutic efficacy of rAAV in hemophilic dogs, rAAV type 2 (rAAV2) carrying canine FIX (cFIX) cDNA was injected into the skeletal muscle of two dogs at doses of 1012–13particles. Circulating cFIX protein levels were maintained for 1 year at levels of 1–2% of normal. Hemostatic correction (WBCT and APTT) paralleled plasma FIX antigen levels. Both dogs still required plasma infusion for spontaneous and traumatic bleeding events. Inhibitors to cFIX protein were not detected in either animal by Bethesda assay. Neutralizing antibodies directed against AAV-2 capsid were pronounced and persistent. Vector DNA and mRNA transcripts were detected only at the injected skeletal muscle tissue. Analysis of both high and low molecular weight DNA identified both replicative episomal and integrated AAV species. These results demonstrate that persistent secretion of the FIX transgene protein, necessary for successful gene therapy of hemophilia B, can be achieved using the parvovirus-based rAAV vector

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lusher J . Transfusion therapy in congenital coagulopathies Hematol Oncol Clin N Am 1994 8: 1167–1180

    Article  CAS  Google Scholar 

  2. Brinkhous K et al. Recombinant human factor IX: replacement therapy, prophylaxis, and pharmacokinetics in canine hemophilia B Blood 1996 88: 2603–2610

    CAS  PubMed  Google Scholar 

  3. Soucie J et al. Hepatitis A virus infections associated with clotting factor concentrate in the United States Transfusion 1998 38: 573–579

    Article  CAS  PubMed  Google Scholar 

  4. National Hemophilia Foundation. The treatment of hemophilia and related bleeding disorders, Medical Advisory No. 312. In: Medical and Scientific Advisory Council (MASAC) Recommendations. New York 1998 p 11–34

  5. Lofqvist T, Nilsson I, Berntorp E, Pettersson H . Haemophilia prophylaxis in young patients – a long-term follow-up J Intern Med 1997 241: 395–400

    Article  CAS  PubMed  Google Scholar 

  6. Petrini P, Lindvall N, Egberg N, Blomback M . Prophylaxis with factor concentrates in preventing hemophilic arthropathy Am J Pediat Hematol Oncol 1991 13: 280–287

    Article  CAS  Google Scholar 

  7. Kay M et al. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient Science 1993 262: 117–119

    Article  CAS  PubMed  Google Scholar 

  8. Dai Y et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression Proc Nat Acad Sci USA 1995 92: 1401–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rabinowitz J, Samulski J . Adeno-associated virus expression system for gene transfer Curr Opin Biotechnol 1998 9: 470–475

    Article  CAS  PubMed  Google Scholar 

  10. Berns K, Bohenzky R . Adeno-associated viruses: an update Adv Virus Res 1987 32: 243–306

    Article  CAS  PubMed  Google Scholar 

  11. Afione S et al. In vivo model of adeno-associated virus vector persistence and rescue J Virol 1996 70: 3235–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Flotte T et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector Proc Natl Acad Sci USA 1993 90: 10613–10617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao X, Li J, Samulski R . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector J Virol 1996 70: 8098–8108

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Flotte T, Carter B . Adeno-associated virus vectors for gene therapy Gene Therapy 1995 2: 357–362

    CAS  PubMed  Google Scholar 

  15. Dong J, Fan P, Frizzell R . Quantitative analysis of the packaging capacity of recombinant adeno-associated virus Hum Gene Ther 1996 7: 2101–2112

    Article  CAS  PubMed  Google Scholar 

  16. Clark K, Sferra T, Johnson P . Recombinant adeno-associated viral vectors mediate long-term transgene expression in muscle Hum Gene Ther 1997 8: 659–669

    Article  CAS  PubMed  Google Scholar 

  17. Yao S, Kurachi K . Expression of human factor IX in mice after injection of genetically modified myoblasts Proc Natl Acad Sci USA 1992 89: 3357–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herzog R et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus Proc Nat Acad Sci USA 1997 94: 5804–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evans J et al. Canine hemophilia B resulting from a point mutation with unusual consequences Proc Nat Acad Sci USA 1989 86: 10095–10099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liles D et al. Extravascular administration of factor IX: potential for replacement therapy of canine and human hemophilia B Thromb Haemostas 1997 77: 944–948

    Article  CAS  Google Scholar 

  21. Monahan P et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia Gene Therapy 1998 5: 40–49

    Article  CAS  PubMed  Google Scholar 

  22. Kurachi S, Hitomi Y, Furukawa M, Kurachi K . Role of intron I in expression of the human factor IX gene J Biol Chem 1995 270: 5276–5281

    Article  CAS  PubMed  Google Scholar 

  23. Xiao X, Li J, Samulski R . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus J Virol 1998 72: 2224–2232

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans J et al. Molecular cloning of a cDNA encoding canine factor IX Blood 1989 74: 207–212

    CAS  PubMed  Google Scholar 

  25. Anderson L . Human parvoviruses J Infect Dis 1990 161: 603–608

    Article  CAS  PubMed  Google Scholar 

  26. Ferrari F, Samulski T, Shenk T, Samulski R . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors J Virol 1996 70: 3227–3234

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Flannery J et al. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus Proc Natl Acad Sci USA 1997 94: 6916–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nilsson I, Berntorp E, Lofqvist T, Pettersson H . Twenty-five years’ experience of prophylactic treatment in severe haemophilia A and B J Intern Med 1992 232: 25

    Article  CAS  PubMed  Google Scholar 

  29. Herzog R et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector Nature Med 1999 5: 56–63

    Article  CAS  PubMed  Google Scholar 

  30. Snyder R et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors Nature Med 1999 5: 64–70

    Article  CAS  PubMed  Google Scholar 

  31. Snyder R et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors Nat Genet 1997 16: 270–276

    Article  CAS  PubMed  Google Scholar 

  32. Summerford C, Samulski R . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions J Virol 1998 72: 1438–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Summerford C, Bartlett J, Samulski R . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection Nature Med 1999 5: 78–82

    Article  CAS  PubMed  Google Scholar 

  34. Qing K et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2 Nature Med 1999 5: 71–77

    Article  CAS  PubMed  Google Scholar 

  35. Summerford C, Samulski R . Viral receptors and vector purification: new approaches for generating clinical-grade reagents Nature Med 1999 5: 587

    Article  CAS  PubMed  Google Scholar 

  36. Chiorini J et al. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles J Virol 1997 71: 6823–6833

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kessler P et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein Proc Natl Acad Sci USA 1996 93: 14082–14087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fisher K et al. Recombinant adeno-associated virus for muscle directed gene therapy Nature Med 1997 3: 306–312

    Article  CAS  PubMed  Google Scholar 

  39. Fisher K et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis J Virol 1996 70: 520–532

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Duan D et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term persistence in muscle tissue J Virol 1998 72: 8568–8577

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ni T et al. Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection J Virol 1998 72: 2777–2787

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vincent-Lacaze N et al. Structure of adeno-associated virus vector DNA following transduction of the skeletal muscle J Virol 1999 73: 1949–1955

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wolberg A, Stafford D, Erie D . Human factor IX binds to specific sites on the collagenous domain of collagen IV J Biol Chem 1997 272: 16717–16720

    Article  CAS  PubMed  Google Scholar 

  44. Roberts H, Eberst M . Current management of hemophilia B Hematol Oncol Clin N Am 1993 7: 1269–1280

    Article  CAS  Google Scholar 

  45. Greelish J et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector Nature Med 1999 5: 439

    Article  CAS  PubMed  Google Scholar 

  46. Ferrari F, Xiao X, McCarty D, Samulski R . New developments in the generation of Ad-free, high-titer rAAV gene therapy vectors Nature Med 1997 3: 1295–1297

    Article  CAS  PubMed  Google Scholar 

  47. Hirt B . Selective extraction of polyoma DNA from infected mouse cell cultures J Mol Biol 1967 26: 365–369

    Article  CAS  PubMed  Google Scholar 

  48. Sambrook J, Fritsch E, Maniatis T . In: Nolan C. Molecular Cloning – a Laboratory Manual Cold Spring Harbor Laboratory Press: Cold Spring Harbor 1989 pp 6.20–21

    Google Scholar 

  49. Kingston R . Analysis of RNA by Northern and slot blot hybridization In: Ausubel F et al (eds) . Current Protocols in Molecular Biology John Wiley & Sons 1997 pp 4.9.1–4.9.13

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Robert Bagnell for his technical assistance, Ms Pam McElveen, Dan Ewell and the staff at the Francis Owen Blood Research Laboratory for their excellent care and handling of the animals, and the UNC Vector Core for helpful discussions. PEM is a Judith Graham Pool Fellow of the National Hemophilia Foundation. CEW is a recipient of the Lucille B Markey Charitable Trust.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, H., Samulski, R., Bellinger, D. et al. Persistent expression of canine factor IX in hemophilia B canines. Gene Ther 6, 1695–1704 (1999). https://doi.org/10.1038/sj.gt.3301024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301024

Keywords

This article is cited by

Search

Quick links