Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Promoter-activated expression of nerve growth factor for treatment of neurodegenerative diseases

Abstract

Genetic transfer approaches have received recent consideration as potential treatment modalities for human central and peripheral nervous system (CNS and PNS, respectively) neurodegenerative disorders, including Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis. Transplantation of genetically modified cells into the brain represents a promising strategy for the delivery and expression of specific neurotrophic factors, neurotransmitter-synthesizing enzymes, and cellular regulatory proteins for intervention in neurodegenerative diseases. The use of specific regulatable promoters may also provide potential control of gene expression required for dose-specific or time-specific therapeutic strategies. In this article, we review the potential use of activated promoters in ex vivo systems for the potential genetic therapy of neurodegenerative disorders, and then describe our own studies using the zinc-inducible metallothionein promoter for the regulated expression of nerve growth factor (NGF) in rodent brain transplants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Barde YA . Trophic factors and neuronal survival Neuron 1989 2: 1525–1534

    CAS  PubMed  Google Scholar 

  2. Theonen H, Bandtlow C, Heuman R . The physiological function of nerve growth factor in the central nervous system: comparison with the periphery Rev Physiol Biochem Pharmacol 1987 109: 146–178

    Google Scholar 

  3. Tuszynski MH et al. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor and noradrenergic neurites after adult spinal cord injury Exp Neurol 1996 137: 157–173

    CAS  PubMed  Google Scholar 

  4. Geschwind MD et al. Transfer of the nerve growth factor gene into cell lines and cultured neurons using a defective herpes simplex virus vector. Transfer of the NGF gene by a HSV-1 vector Mol Brain Res 1994 24: 327–335

    CAS  PubMed  Google Scholar 

  5. Freed WJ et al. Genetically altered and defined cell lines for transplantation in animal models of Parkinson’s disease Prog Brain Res 1990 82: 11–21

    CAS  PubMed  Google Scholar 

  6. Gage FH et al. Grafting genetically-modified cells to the brain: conceptual and technical issues Prog Brain Res 1990 82: 1–10

    CAS  PubMed  Google Scholar 

  7. Gage FH et al. Gene therapy in the CNS: intracerebral grafting of genetically-modified cells Brain Res 1990 86: 205–217

    CAS  Google Scholar 

  8. Bjorklund A, Stenevi U . Intracerebral neural implants: neuronal implants and reconstruction of damaged circuitries Ann Rev Neurosci 1984 7: 279–308

    CAS  PubMed  Google Scholar 

  9. Freed WJ et al. Transplantation of catecholamine containing tissues to restore functional capacity to the damaged nigrostriatal system. In: JR Sladek Jr, DM Gash (eds). Neural Transplants: Development and Function Plenum Press: New York 1983 373–406

    Google Scholar 

  10. Lindvall O et al. Human fetal dopamine neurons grafted into the striatum of two patients with severe Parkinson’s disease. A detailed account of methodology and a six-month follow-up Arch Neurol 1989 46: 615–681

    CAS  PubMed  Google Scholar 

  11. Bjorklund A, Kromer LF, Stenevi U . Cholinergic reinnervation of the rat hippocampus by septal implants is stimulated by perforant path lesion Brain Res 1979 173: 57–64

    CAS  PubMed  Google Scholar 

  12. Dunnett SB et al. Septal transplants restore maze learning in rats with fornix-fimbria lesions Brain Res 1982 251: 335–348

    CAS  PubMed  Google Scholar 

  13. Lopez-Lozano JJ, Bravo G, Abascal J . Grafting of perfused adrenal medullary tissue into the caudate nucleus of patients with Parkinson’s disease J Neurosurg 1991 75: 234–243

    CAS  PubMed  Google Scholar 

  14. Takeuchi J et al. Adrenal medulla transplantation into the putamen in Parkinson’s disease Neurosurgery 1990 26: 499–503

    CAS  PubMed  Google Scholar 

  15. Plunkett RJ et al. Long-term evaluation of hemiparkinsonian monkeys after adrenal autografting or cavitation alone J Neurosurg 1990 73: 918–926

    CAS  PubMed  Google Scholar 

  16. Sladek JR, Gash DM . Nerve-cell grafting in Parkinson’s disease J Neurosurg 1988 68: 337–351

    PubMed  Google Scholar 

  17. Gage FH, Kawaja MD, Fisher LJ . Genetically modified cells: application for intracerebral grafting Trends Neurosci 1991 14: 328–333

    CAS  PubMed  Google Scholar 

  18. Selden RF et al. Implantation of genetically engineered fibroblasts into mice: implications for gene therapy Science 1987 236: 714–718

    CAS  PubMed  Google Scholar 

  19. Gash DM et al. Amitotic neuroblastoma cells used for neural implants in monkeys Science 1986 233: 1420–1422

    CAS  PubMed  Google Scholar 

  20. Kordower JH et al. NGF-like trophic support from peripheral nerve for grafted rhesus adrenal chromaffin cells J Neurosurg 1990 73: 418–428

    CAS  PubMed  Google Scholar 

  21. Silani Y et al. Effects of nerve growth factor in adrenal autografts in parkinsonism Ann Neurol 1990 27: 341–342

    CAS  PubMed  Google Scholar 

  22. Cheng B, Mattson MP . Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: prevention by NGF and bFGF Exp Neurol 1992 117: 114–123

    CAS  PubMed  Google Scholar 

  23. Junard EO, Montero CN, Hefti F . Long-term administration of mouse nerve growth factor to adult rats with partial lesions of the cholinergic septo-hippocampal pathway Exp Neurol 1990 110: 25–38

    CAS  PubMed  Google Scholar 

  24. Doering LC . Nervous system modification by transplants and gene transfer Bioessays 1994 16: 825–831

    CAS  PubMed  Google Scholar 

  25. Horellou P et al. Grafts of genetically engineered cells with a recombinant retrovirus encoding human tyrosine hydroxylase: behavioral effects and in vivo release of dopa and dopamine in a rat model of Parkinson's disease In: O Lindvall, A Bjorklund H Widmer (eds) . Intracerebral Transplantation in Movement Disorders New York: Elsevier 1991 pp 259–270

    Google Scholar 

  26. Ernfors P et al. A cell line producing recombinant nerve growth responses in intrinsic and grafted central cholinergic neurons Proc Nat Acad Sci USA 1989 86: 4756–4760

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawaja MD, Rosenberg MB, Yoshida K, Gage FH . Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats J Neurosci 1992 12: 2849–2864

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Quinonero J et al. Gene transfer to the central nervous system by transplantation of cerebral endothelial cells Gene Therapy 1997 4: 101–110

    Google Scholar 

  29. Kawaja MD, Gage FH . Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factors Neuron 1991 7: 1019–1030

    CAS  PubMed  Google Scholar 

  30. Pechan PA et al. Genetically-modified fibroblasts producing NGF protect hippocampal neurons after ischemia in the rat Neuroreport 1995 6: 669–672

    CAS  PubMed  Google Scholar 

  31. Eagle KS, Chalmers GR, Clary DO, Gage FH . Axonal regeneration and limited functional recovery following hippocampal deafferentation J Comp Neurol 1995 363: 377–388

    CAS  PubMed  Google Scholar 

  32. Robner SJ et al. Effects of intraventricular transplantation of NGF-secreting cells on cholinergic basal foregrain neurons after partial immunolesion J Neurosci Res 1996 45: 40–56

    Google Scholar 

  33. Tuszynski MH et al. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor and noradrenergic neuritis after adult spinal cord injury Exp Neurol 1996 137: 157–173

    CAS  PubMed  Google Scholar 

  34. Andsberg G et al. Amelioration of ischemia-induced neruonal death in the rat striatum by NGF-secreting neural stem cells Eur J Neurosci 1998 10: 2026–2038

    CAS  PubMed  Google Scholar 

  35. Lin Q et al. Human fetal astrocytes as an ex vivo gene therapy vehicle for delivering biologically active nerve growth factor Hum Gene Ther 1997 8: 331–339

    CAS  PubMed  Google Scholar 

  36. Margolskee RF, Kavathas P, Berg P . Epstein–Barr virus shuttle vector for stable episomal replication of cDNA expression libraries in human cells Mol Cell Biol 1988 8: 2837–2847

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gage FH et al. Human amnion membrane matrix as a substratum for axonal regeneration in the central nervous system Exp Brain Res 1988 72: 371–380

    CAS  PubMed  Google Scholar 

  38. Messersmith DJ, Fabrazzo M, Mocchetti I, Dromer LF . Effects of sciatic nerve transplants after fimbria-fornix lesion: examination of the role of nerve growth factor Brain Res 1991 557: 293–297

    CAS  PubMed  Google Scholar 

  39. Wendt JS, Fagg GE, Cotman CW . Regeneration of rat hippocampal fimbria fibers after fimbria transection and peripheral nerve or fetal hippocampal implantation Exp Neurol 1983 79: 452–461

    CAS  PubMed  Google Scholar 

  40. Sanberg PR, Freeman TB, Cahill DW . Polymers, encapsulation, and artificial organs J Neural Transplant Plast 1993 4: 97–99

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Emerich DF, Hammang JP, Baetge EE, Winn SR . Implantation of polymer-encapsulated human nerve growth factor-secreting fibroblasts attenuates the behaviorial and neuropathological consequences of quinolinic acid injections into rodent striatum Exp Neurol 1994 130: 141–150

    CAS  PubMed  Google Scholar 

  42. Winn SR et al. Polymer-encapsulated cells genetically-modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons Proc Natl Acad Sci USA 1994 91: 2324–2328

    CAS  PubMed  PubMed Central  Google Scholar 

  43. No D, Evans RM . Ecdysone-inducible expression in mammalian cells and transgenic mice Proc Natl Acad Sci USA 1996 93: 3346–3351

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Winn SR et al. Polymer-encapsulated genetically-modified cells continue to secrete human nerve growth factor for one year in rat ventricles: behaviorial and anatomical consequences Exp Neurol 1996 140: 126–138

    CAS  PubMed  Google Scholar 

  45. Hammang JP et al. Delivery of neurotrophic factors to the CNS using encapsulated cells: developing treatments of neurodegenerative diseases Cell Transplant 1995 4: S27–S28

    PubMed  Google Scholar 

  46. Schinstine M, Fiore DM, Winn SR, Emerich DF . Polymer-encapulated schwannoma cells expressing human nerve growth factor promote the survival of cholinergic neurons after afimbria-fornix transection Cell Transplant 1995 4: 93–102

    CAS  PubMed  Google Scholar 

  47. Niijima K et al. Enhanced survival and neuronal differentiation of adrenal chromaffin cells cografted into the striatum with NGF-producing fibroblasts J Neurosci 1995 15: 1180–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Castillo JB et al. Retinal ganglion cell survival is promoted by genetically-modified astrocytes designed to secrete brain-derived neurotrophic factor (BNDF) Brain Res 1994 647: 30–36

    CAS  PubMed  Google Scholar 

  49. Date I et al. Chromaffin cell survival from both young and old donors is enhanced by co-grafts of polymer encapsulated human NGF-secreting cells Neuroreport 1996 7: 1813–1818

    CAS  PubMed  Google Scholar 

  50. Martinez-Serrano A, Fischer W, Bjorklund A . Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain Neuron 1995 15: 473–484

    CAS  PubMed  Google Scholar 

  51. Martinez-Serrano A et al. CNS-derived neural progenitor cells for gene transfer of nerve growth factor to the adult rat brain: complete rescue of axotomized cholinergic neurons after transplantion to the septum J Neurosci 1995 15: 5668–5680

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindner MD et al. Effects of intraventicular encapsulated hNGF-secreting fibroblasts in aged rats Cell Transplant 1996 5: 205–223

    CAS  PubMed  Google Scholar 

  53. Martinez-Serrano A et al. Long-term functional recovery from age-induced spatial memory impairments by nerve growth factor gene transfer to the rat basal forebrain Proc Natl Acad Sci USA 1996 93: 6355–6360

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Matinez-Serrano A, Bjorklund A . Ex vivo nerve growth factor gene transfer to the basal forebrain in presymptomatic middle-aged rats prevents the development of cholinergic neuron atrophy and cognitive impairment during aging Proc Natl Acad Sci USA 1998 95: 1858–1863

    Google Scholar 

  55. Arenas E, Persson H . Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo Nature 1994 367: 368–371

    CAS  PubMed  Google Scholar 

  56. Martinez-Serrano A, Hantzopoulos PA, Bjorklund A . Ex vivo gene transfer of brain-derived neurotrophic factor to the intact rat forebrain: neurotrophic effects on cholinergic neurons Eur J Neurosci 1996 8: 727–735

    CAS  PubMed  Google Scholar 

  57. Doering LC, Roder JC, Henderson JT . Ciliary neurotrophic factor promotes the terminal differentiation of v-myc immortalized sympathoadrenal progenitor cells in vivo Dev Brain Res 1995 89: 56–66

    CAS  Google Scholar 

  58. Chalmers GR et al. Adrenal chromaffin cells transdifferentiate in response to basic fibroblast growth factor and show directed outgrowth to a nerve growth factor source in vivo Exp Neurol 1995 133: 32–42

    CAS  PubMed  Google Scholar 

  59. Emerich DF et al. Alleviation of behaviorial deficits in aged rodents following implantation of encapsulated GDNF-producing fibroblasts Brain Res 1996 736: 99–110

    CAS  PubMed  Google Scholar 

  60. Tuszynski MH et al. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor and noradrenergic neurites after adult spinal cord injury Exp Neurol 1996 137: 157–173

    CAS  PubMed  Google Scholar 

  61. Nakahara Y, Gage FH, Tuszynski MH . Grafts of fibroblasts genetically modified to secrete NGF, BDNF, NT-3, or basic FGF elicit differential responses in the adult spinal cord Cell Transplant 1996 5: 191–204

    CAS  PubMed  Google Scholar 

  62. Kim DH et al. Treatment with genetically-engineered fibroblasts producing NGF or BDNF can accelerate recovery from traumatic spinal cord injury in the adult rat Neuroreport 1996 7: 2221–2225

    CAS  PubMed  Google Scholar 

  63. Aebischer P, Kato AC . Treatment of amyotrophic lateral sclerosis using a gene therapy approach Eur Neurol 1995 35: 65–68

    CAS  PubMed  Google Scholar 

  64. Kramer R et al. Gene transfer through the blood–nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis Nature Med 1995 1: 1162–1166

    CAS  PubMed  Google Scholar 

  65. Holtzman DM et al. Nerve growth factor reverses neuronal atrophy in a Down syndrome model of age-related neurodegeneration Neurology 1993 43: 2668–2673

    CAS  PubMed  Google Scholar 

  66. Miller N, Whelan J . Progress in transcriptionally targeted and regulatable vectors for gene therapy Hum Gene Ther 1997 8: 803–815

    CAS  PubMed  Google Scholar 

  67. Dimaio JM et al. Directed enzyme pro-drug gene therapy for pancreatic cancer in vivo Surgery 1994 116: 205–213

    CAS  PubMed  Google Scholar 

  68. Richards CA, Austin EA, Huber BE . Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy Hum Gene Ther 1995 6: 881–893

    CAS  PubMed  Google Scholar 

  69. Kaneko S et al. Adenovirus-mediated gene therapy of heptocellular carcinoma using cancer-specific gene expression Cancer Res 1995 55: 5283–5287

    CAS  PubMed  Google Scholar 

  70. Koh GY et al. Targeted expression of transforming growth factor β1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis J Clin Invest 1995 95: 114–121

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lu B, Federoff HJ . Herpes simplex virus type I amplicon vectors with glucocorticoid-inducible gene expression Hum Gene Ther 1995 6: 419–428

    CAS  PubMed  Google Scholar 

  72. Smith JD, Wong E, Ginsberg M . Cytochrome P450 1A1 promoter as a genetic switch for the regulatable and physiological expression of a plasma protein in transgenic mice Proc Natl Acad Sci USA 1995 92: 11926–11930

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Miller N, Vile RG, Hart IR . Effects of modulators of tyrosinase activity on expression on mlL2 cDNA driven by the tyrosinase promoter Melanoma Res 1995 5: 75–81

    CAS  PubMed  Google Scholar 

  74. Culig Z et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-1 keratinocyte growth factor, and epidermal growth factor Cancer Res 1994 54: 5474–5478

    CAS  PubMed  Google Scholar 

  75. Dachs GU, Stratford J . The molecular response of mammalian cells to hypoxia and the potential for exploitation in cancer therapy Br J Cancer 1996 74: S126–S132

    Google Scholar 

  76. Ikeda E, Achen MG, Breier G, Risau W . Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells J Biol Chem 1995 270: 19761–19766

    CAS  PubMed  Google Scholar 

  77. Arnet UA et al. Regulation of endothelial nitric-oxide synthase during hypoxia J Biol Chem 1996 271: 15069–15073

    CAS  PubMed  Google Scholar 

  78. Gazit G, Kane S, Nichols P, Lee AS . Use of stress-inducible frp78/Bip promoter in targeting high level gene expression in fibrosarcoma in vivo Cancer Res 1995 55: 1660–1663

    CAS  PubMed  Google Scholar 

  79. Hallahaan DE et al. Spatial and temporal control of gene therapy using ionizing radiation Nature Med 1995 1: 786–791

    Google Scholar 

  80. Kohno K et al. The direct activation of human multidrug resistance gene (MDR1) by anticancer agents Biochem Biophys Res Commun 1989 165: 1415–1421

    CAS  PubMed  Google Scholar 

  81. Gossen M, Bujard H . Tight control of gene expression im mammalian cells by tetracycline-responsive promoters Proc Natl Acad Sci USA 1992 89: 5547–5551

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gossen M et al. Transcriptional activation by tetracyclines in mammalian cells Science 1995 268: 1766–1769

    CAS  PubMed  Google Scholar 

  83. Paulus W et al. Self-contained, tetracycline-regulated retroviral vector system for gene delivery to mammalian cells J Virol 1996 70: 62–67

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Saitoh Y et al. Dose-dependent doxycycline-mediated adrenocorticotrophic hormone secretion from encapsulated tet-on proopiomelanocortin neuro2A cells in the subarachnoid space Hum Gene Ther 1998 9: 997–1002

    CAS  PubMed  Google Scholar 

  85. Paillard F . Tet-On: a gene switch for the exogeneous regulation of transgene expression Hum Gene Ther 1998 9: 983–985

    CAS  PubMed  Google Scholar 

  86. Bohl D, Heard JM . Modulation of erythropoietin delivery from engineered muscles in mice Hum Gene Ther 1997 8: 195–294

    CAS  PubMed  Google Scholar 

  87. Bohl D, Naffakh N, Heard JM . Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary fibroblasts Nature Med 1997 3: 299–305

    CAS  PubMed  Google Scholar 

  88. Wang X-S, Yoder MC, Zhou SZ, Srivastava S . Parvovirus B19 promoter at map unit 6 confers autonomous replication competence and erythroid specificity to adeno-associated virus 2 in primary human hematopoietic cells Proc Natl Acad Sci USA 1995 92: 12416–12420

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chang B, Roninson IB . Inducible retroviral vectors regulated by lac repressor in mammalian cells Gene 1996 183: 137–142

    CAS  PubMed  Google Scholar 

  90. Braselmann S, Graninger P, Busslinger M . A selective transcriptional induction system for mammalian cells based on Gal 4-estrogen receptor fusion proteins Proc Natl Acad Sci USA 1993 90: 1657–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Whelan J, Miller N . Generation of estrogen receptor mutants with altered ligand specificity for use in establishing a regulatable gene expression system J Steroid Biochem Mol Biol 1996 58: 3–12

    CAS  PubMed  Google Scholar 

  92. Wang Y, O’Malley BW, Tsai SY . A regulatory system for use in gene transfer Proc Natl Acad Sci USA 1994 91: 8180–8184

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Oligino T et al. In vivo transgene activation from an HSV-based gene therapy vector by GAL4:vp16 Gene Therapy 1996 3: 892–899

    CAS  PubMed  Google Scholar 

  94. Rivera VM et al. A humanized system for pharmacologic control of gene expression Nature Med 1996 2: 1028–1032

    CAS  PubMed  Google Scholar 

  95. Magari SR et al. Pharmacologic control of a humanized gene therapy system implanted into nude mice J Clin Invest 1997 100: 2865–2872

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ye X et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer Science 1999 283: 88–91

    CAS  PubMed  Google Scholar 

  97. Hamer DH . Metallothionein Ann Rev Biochem 1986 55: 913–951

    CAS  PubMed  Google Scholar 

  98. Karin M . Metallothioneins: proteins in search of function Cell 1985 41: 9–10

    CAS  PubMed  Google Scholar 

  99. Lee VMF, Page C . The dynamics of nerve growth factor-induced neurofilament and vimentin filament expression and organization in PC12 cells J Neurosci 1984 4: 1705–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hefti F, Hartikka J, Schlumpf M . Implantation of PC12 cells into the corpus striatum of rats with lesions of the dopaminergic nigrostriatal neurons Brain Res 1985 348: 283–288

    CAS  PubMed  Google Scholar 

  101. Cunningham LA, Short MP, Breakfield XO, Bohn MC . Nerve growth factor released by transgenic astrocytes enhances the function of adrenal chromaffin cell grafts in a rat model of Parkinson’s disease Brain Res 1994 658: 219–231

    CAS  PubMed  Google Scholar 

  102. Cunningham LA et al. Survival and differentiation within the adult mouse striatum of grafted rat pheochromocytoma cells (PC12) genetically modified to express recombinant β-NGF Exp Neurol 1991 112: 174–182

    CAS  PubMed  Google Scholar 

  103. Short MP et al. Autocrine differentiation of PC12 cells mediated by retroviral vectors Dev Neurosci 1990 12: 128–133

    Google Scholar 

  104. Emerich DF et al. Polymer-encapsulated PC12 cells promote recovery of motor function in aged rats Exp Neurol 1993 122: 37–47

    CAS  PubMed  Google Scholar 

  105. Scott J et al. Isolation and sequence of a cDNA encoding the precursor of nerve growth factor Nature 1983 302: 538–540

    CAS  PubMed  Google Scholar 

  106. Chen C, Okayama H . Calcium phosphate-mediated gene transfer: a highly efficient system for stably transforming cells with plasmid DNA Mol Cell Biol 1988 6: 632–638

    CAS  Google Scholar 

  107. Freed WJ, Patel-Vaidya U, Geller HM . Properties of PC12 pheochromocytoma cells transplanted to the adult rat brain Exp Brain Res 1986 63: 557–566

    CAS  PubMed  Google Scholar 

  108. Leonard DGB, Ziff EB, Greene LA . Identification and characterization of mRNAs regulated by nerve growth factor in PC12 cells Mol Cell Biol 1987 7: 3156–3167

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Qin L et al. Promoter attenuation in gene therapy: interferon-γ and tumor necrosis factor-α inhibit transgene expression Hum Gene Ther 1997 8: 2019–2029

    CAS  PubMed  Google Scholar 

  110. Paillard F . Promoter attenuation in gene therapy: causes and remedies Hum Gene Ther 1997 8: 2009–2010

    CAS  PubMed  Google Scholar 

  111. Paxinos G, Watson C . The Rat Brain in Stereotactic Coordinates. Second edition Academic Press: New York 1986

    Google Scholar 

Download references

Acknowledgements

Special consideration is extended to Joel Ito and Vince Warren for their artistic and photographic support. Copyright release was received and gratefully acknowledged from Cell Transplantation and Cognizant Communication Corporation to allow re-publication of text and selected Figures and Tables from a previous publication (Rohrer DC, Nilaver G, Nipper V, Machida CA, Genetically modified PC12 brain grafts: survivability and inducible nerve growth factor expression. Cell Transplantation 1996; 5: 57–68). TCW is now a medical student at Loma Linda University School of Medicine in Loma Linda, California. DCR is now a practicing physician and neurosurgeon with Microneurosurgical Consultants, PC (9155 SW Barnes Road, Suite 440, Portland, Oregon 97225). CAM is supported by NIH RR00163, HL42358, and DK53462, and is an American Heart Association Established Investigator.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyman, T., Rohrer, D., Kirigiti, P. et al. Promoter-activated expression of nerve growth factor for treatment of neurodegenerative diseases. Gene Ther 6, 1648–1660 (1999). https://doi.org/10.1038/sj.gt.3300989

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300989

Keywords

This article is cited by

Search

Quick links