Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Inflammatory responses and their impact on β-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus

Abstract

An E1, E3 deleted adenovirus vector, serotype 5, carrying the marker gene LacZ was bilaterally microinfused into the caudate nuclei of 10 St Kitts green monkeys. The location and number of cells expressing transgene and host immunologic response were evaluated at 1 week (n = 2) and 1 month (n = 8) following vector infusion. A large number of cells expressed β-galactosidase in some monkeys, exceeding 600000 in one monkey, but no expression was seen in three of 10. All monkeys had positive adenoviral antibody titers before vector infusion, indicating the possibility of previous exposure to some adenovirus, but only one showed a significant increase in titer afterwards. Inflammatory cell markers revealed an inverse correlation between transgene expression and the extent of inflammatory response. Dexamethasone administered immediately before and for 8 days following vector delivery, however, had no effect on transgene expression. The demonstration of significant inflammatory responses in the brain of some individual primates, including demyelination, indicates the need for new generations of adenovirus vectors, or the successful suppression of inflammatory responses, before this vector is suitable for non-cytotoxic clinical applications in the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Choi-Lundberg DL et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy Science 1997 275: 838–841

    Article  CAS  PubMed  Google Scholar 

  2. Lin WR, Casas I, Wilcock GK, Itzhaki RF . Neurotropic viruses and Alzheimer’s disease – a search for varicella zoster virus DNA by the polymerase chain reaction J Neurol NeurosurgPsychiat 1997 62: 586–589

    Article  CAS  Google Scholar 

  3. Davidson BL, Bohn MC . Recombinant adenovirus – a gene transfer vector for study and treatment of CNS diseases Exp Neurol 1997 144: 125–130

    Article  CAS  PubMed  Google Scholar 

  4. Bilang-Bleuel A et al. Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinsons disease Proc Natl Acad Sci USA 1997 94: 8818–8823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi-Lundberg DL et al. Behavioral and cellular protection of rat dopaminergic neurons elicted by an adenoviral vector encoding glial cell line-derived neurotrophic factor Exp Neurol 1998 154: 261–275

    Article  CAS  PubMed  Google Scholar 

  6. Betz AL, Yang GY, Davidson BL . Attentuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain J Cereb Blood Flow Metab 1995 15: 547–551

    Article  CAS  PubMed  Google Scholar 

  7. Yang GY, Zhao YJ, Davidson BL, Betz AL . Overexpression of interleukin-1 receptor antagonist in the mouse brain reduces ischemic brain injury Brain Res 1997 751: 181–188

    Article  CAS  PubMed  Google Scholar 

  8. Akli S et al. Transfer of a foreign gene into the brain using adenovirus vectors (see comments) Natl Genet 1993 3: 224–228

    Article  CAS  Google Scholar 

  9. Davidson BL et al. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector (see comments) Nat Genet 1993 3: 219–223

    Article  CAS  PubMed  Google Scholar 

  10. Le Gal La Salle G et al. An adenovirus vector for gene transfer into neurons and glia in the brain Science 1993 259: 988–990

    Article  CAS  PubMed  Google Scholar 

  11. Byrnes AP, Rusby JE, Wood MJ, Charlton HM . Adenovirus gene transfer causes inflammation in the brain Neuroscience 1995 66: 1015–1024

    Article  CAS  PubMed  Google Scholar 

  12. Peltekian E et al. Adenovirus-mediated gene transfer to the brain: methodological assessment (review) J Neurosci Meth 1997 71: 77–84

    Article  CAS  Google Scholar 

  13. Kajiwara K et al. Immune responses to adenoviral vectors during gene transfer in the brain Hum Gene Ther 1997 8: 253–265

    Article  CAS  PubMed  Google Scholar 

  14. Wood MJ et al. Immune responses to adenovirus vectors in the nervous system (review) Trends Neurosci 1996 19: 497–501

    Article  CAS  PubMed  Google Scholar 

  15. Byrnes AP, Wood MJ, Charlton HM . Role of T cells in inflammation caused by adenovirus vectors in the brain Gene Therapy 1996 3: 644–651

    CAS  PubMed  Google Scholar 

  16. Horellou P, Sabate O, Bue-Caron MH, Mallet J . Adenovirus-mediated gene transfer to the central nervous system for Parkinson’s disease (review) Exp Neurol 1997 144: 131–138

    Article  CAS  PubMed  Google Scholar 

  17. Smith JG et al. Intracranial administration of adenovirus expressing HSV-TK in combination with ganciclovir produces a dose-dependent, self-limiting inflammatory response Hum Gene Ther 1997 8: 943–954

    Article  CAS  PubMed  Google Scholar 

  18. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS . Role of transcriptional activation of IkBa in mediation of immunosuppression by glucocorticoids Science 1995 270: 283–286

    Article  CAS  PubMed  Google Scholar 

  19. Yang-Yen HF et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein–protein interaction Cell 1990 62: 1205–1215

    Article  CAS  PubMed  Google Scholar 

  20. Pearce D, Yamamoto KR . Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element Science 1993 259: 1161–1165

    Article  CAS  PubMed  Google Scholar 

  21. Bohn MC et al. Adenoviral-mediated transgene expression in non-human primate brain Hum Gene Ther 1999 10: 1175–1184

    Article  CAS  PubMed  Google Scholar 

  22. Goodman JC et al. Adenoviral-mediated thymidine kinase gene transfer into the primate brain followed by systemic ganciclovir: pathologic, radiologic, and molecular studies Hum Gene Ther 1996 7: 1241–1250

    Article  CAS  PubMed  Google Scholar 

  23. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors Nature Med 1996 2: 545–550

    Article  CAS  PubMed  Google Scholar 

  24. Abe K, Setoguchi Y, Hayashi T, Itoyama Y . In vivo adenovirus-mediated gene transfer and the expression in ischemic and reperfused rat brain Brain Res 1997 763: 191–201

    Article  CAS  PubMed  Google Scholar 

  25. Hall AR, Dix BR, O’Carroll SJ, Braithwaite AW . p53-dependent cell death/apoptosis is required for a productive adenovirus infection (see comments) Nature Med 1998 4: 1068–1072

    Article  CAS  PubMed  Google Scholar 

  26. Bauer J et al. T-cell apoptosis in inflammatory brain lesions: destruction of T cells does not depend on antigen recognition (see comments) Am J Pathol 1998 153: 715–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cuff S, Ruby J . Evasion of apoptosis by DNA viruses (review) Immunol Cell Biol 1996 74: 527–537

    Article  CAS  PubMed  Google Scholar 

  28. Hardwick JM . Virus-induced apoptosis (review) Ad Pharmacol 1997 41: 295–336

    Article  CAS  Google Scholar 

  29. Marcellus RC et al. The early region 4 orf 4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis J Virol 1998 72: 7144–7153

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Marcellus RC et al. Adenovirus type 5 early region 4 is responsible for E1A-induced p53-independent apoptosis J Virol 1996 70: 6207–6215

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Morimoto K et al. Intrinsic response to Borna virus infection of the central nervous system Proc Natl Acad Sci USA 1996 93: 13345–13350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Durham HD et al. The immunosuppressant fk506 prolongs transgene expression in brain following adenovirus-mediated gene transfer Neuroreport 1997 8: 2111–2115

    Article  CAS  PubMed  Google Scholar 

  33. Stein CS, Pemberton JL, van Rooijen N, Davidson BL . Effects of macrophage depletion and anti-CD40 ligand on transgene expression and redosing with recombinant adenovirus Gene Therapy 1998 5: 431–439

    Article  CAS  PubMed  Google Scholar 

  34. Byrnes AP, MacLaren RE, Charlton HM . Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination J Neurosci 1996 16: 3045–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eck SL et al. Clinical protocol – treatment of advanced CNS malignancies with the recombinant adenovirus h5.010rsvtk – a phase 1 trial Hum Gene Ther 1996 7: 1465–1482

    Article  CAS  PubMed  Google Scholar 

  36. Cirielli C, Capogrossi MC, Passaniti A . Anti-tumor genetherapy J Neuro Oncol 1997 31: 217–223

    Article  CAS  Google Scholar 

  37. Lisovoski F et al. Phenotypic alteration of astrocytes induced by ciliary neurotrophic factor in the intact adult brain, as revealed by adenovirus-mediated gene transfer J Neurosci 1997 17: 7228–7236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maron A et al. Differential toxicity of ganciclovir for rat neurons and astrocytes in primary culture following adenovirus-mediated transfer of the HSVtk gene Gene Therapy 1997 4: 25–31

    Article  CAS  PubMed  Google Scholar 

  39. Kaplan JM et al. Humoral and cellular immune responses of nonhuman primates to long-term repeated exposure to Ad2/CFTR-2 Gene Therapy 1996 3: 117–127

    CAS  PubMed  Google Scholar 

  40. Jooss K, Yang Y, Wilson JM . Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung Hum Gene Ther 1996 7: 1555–1566

    Article  CAS  PubMed  Google Scholar 

  41. Yang YF et al. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis Nat Genet 1994 7: 362–369

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Krushel LA, Edelman GM . Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene Proc Natl Acad Sci USA 1996 93: 3932–3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Armentano D et al. Characterization of an adenovirus gene transfer vector containing an E4 deletion Hum Gene Ther 1995 6: 1343–1353

    Article  CAS  PubMed  Google Scholar 

  44. Fisher KJ et al. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis Virology 1996 217: 11–22

    Article  CAS  PubMed  Google Scholar 

  45. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28kb of DNA independently expressing both full-length dystrophin and β-galactosidase Proc Natl Acad Sci USA 1996 93: 5731–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Quantin B, Perricaudel LD, Tajbakhsh S, Mandel JL . Adenovirus as an expression vector in muscle cells in vivo Proc Natl Acad Sci USA 1992 89: 2581–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. National Research Council . Guide for the Care and Use of Laboratory Animals National Academy Press: Washington DC 1996

    Google Scholar 

  48. Cepko C . Lineage analysis and immortalization of neural cells via retrovirus vectors. In: Boulton AA, Baker GB, Campagnoni AT (eds). Molecular Neurobiological Techniques, Neuromethods Humana: Clifton, NJ 1989

    Google Scholar 

  49. Redmond DE Jr et al. Neuropathological effects of an E1a, E3 deleted adenoviral vector injected into primate striatum: implications for clinical use Am Soc Gene Ther Abstr 1998 1: 152a (Abstr. 607)

    Google Scholar 

Download references

Acknowledgements

We thank R Jude Samulski, Gene Therapy Center, University of North Carolina-Chapel Hill, for his helpful advice and comments on the manuscript and Richard Flavell, Department of Immunobiology at Yale, for his suggestions and support of this project. We also thank Mr Richard Anderson and the University of Iowa Vector Core, the staff of the St Kitts Biomedical Research Foundation, St Kitts, West Indies, for assistance with the animal experiments and surgery, especially Sean O’Loughlin, John Wharton, Ernell Nisbett, Franklyn Connor, Ricaldo Pike and Wellington Sutton, and Mrs Ianina Filopovich and Mrs Irena Shavytsky for technical assistance. The study was primarily supported by USPHS Grants MH57958 and NS24032 and the Axion Research Foundation, and partial support by the Medical Research Institute Council of Children’s Memorial Hospital, Chicago (Dr Bohn), the Carver Foundation (partial support for Dr Davidson), and Research Scientist Award from NIMH MH00643 to Dr Redmond.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, M., Foellmer, H., Elsworth, J. et al. Inflammatory responses and their impact on β-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus. Gene Ther 6, 1368–1379 (1999). https://doi.org/10.1038/sj.gt.3300958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300958

Keywords

This article is cited by

Search

Quick links