Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Prevention of autoimmune diabetes by intramuscular gene therapy with a nonviral vector encoding an interferon-gamma receptor/IgG1 fusion protein

Abstract

We report on long-term delivery of an interferon-γ (IFNγ) inhibitory protein by intramuscular (i.m.) gene therapy. IFNγ is a cytokine that plays an important role in many inflammatory disorders, including autoimmune insulin-dependent diabetes mellitus (IDDM) in NOD mice and (in various strains) multiple low-dose streptozotocin (STZ)-induced diabetes (MDSD). By cDNA insertion into plasmid VICAL VR-1255 we constructed an expression vector encoding a soluble IFNγ receptor/IgG1 heavy chain (all murine) fusion protein (IFNγR/IgG1). This protein is secreted as a homodimer and neutralizes IFNγ in vitro. We show that i.m. injections of this vector as naked DNA in mice results in secretion of IFNγR/IgG1, with serum levels exceeding 100 ng/ml for months after treatment. These levels are sufficient to neutralize IFNγ in vivo, and to prevent either MDSD or cyclophosphamide (CYP)-accelerated diabetes in NOD mice, which are both characterized by systemic release of IFNγ. In these diseases gene therapy considerably reduces inflammation in the islets of Langerhans (insulitis). Also, circulating IFNγR/IgG1 blocked IFNγ-enhanced nitric oxide production by peritoneal macrophages. The fusion protein is constructed from nonimmunogenic self elements, avoiding a neutralizing immune response and making it suitable for prolonged therapy of numerous inflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. De Maeyer E, De Maeyer-Guignard J . Interferons. In: Thomson A (ed) . The Cytokine Handbook Academic Press: San Diego 1998 491–516

    Google Scholar 

  2. Billiau A . Interferon-gamma in autoimmunity Cytokine Growth Factor Rev 1996 7: 25–34

    Article  CAS  Google Scholar 

  3. Lucey DR, Clerici M, Shearer GM . Type 1 and type 2 cytokine dysregulation in human infections, neoplastic, and inflammatory diseases Clin Microbiol Rev 1996 9: 532–562

    Article  CAS  Google Scholar 

  4. Yoon JW, Jun HS, Santamania P . Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells Autoimmunity 1998 27: 109–122

    Article  CAS  Google Scholar 

  5. Delovitch TL, Singh B . The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD Immunity 1997 7: 727–738

    Article  CAS  Google Scholar 

  6. Campbell IL, Kay TW, Oxbrow L, Harrison LC . Essential role for interferon-gamma and interleukin-6 in autoimmune insulin-dependent diabetes in NOD/Wehi mice J Clin Invest 1991 87: 739–742

    Article  CAS  Google Scholar 

  7. Nicoletti F et al. The effects of a nonimmunogenic form of murine soluble interferon-gamma receptor on the development of autoimmune diabetes in the NOD mouse Endocrinol 1996 137: 5567–5575

    Article  CAS  Google Scholar 

  8. Rothe H et al. Cyclophosphamide treatment of female NOD mice causes enhanced expression of inducible nitric oxide synthase and interferon-gamma, but not IL-4 Diabetologia 1994 37: 1154–1158

    Article  CAS  Google Scholar 

  9. Piccirillo C, Chang Y, Prud’homme GJ . Transforming growth factor beta-1 (TGF-beta-1) somatic gene therapy prevents autoimmune disease in NOD mice J Immunol 1998 161: 3950–3956

    CAS  PubMed  Google Scholar 

  10. Charlton B, Bacelj A, Slattery RM, Mandel TE . Cyclophosphamide-induced diabetes in NOD/WEHI mice. Evidence for suppression in spontaneous autoimmune diabetes mellitus Diabetes 1989 38: 441–447

    Article  CAS  Google Scholar 

  11. Wolff JA et al. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle Hum Mol Genet 1992 1: 363–369

    Article  CAS  Google Scholar 

  12. Raz E et al. Modulation of disease activity in murine lupus erythematosus by cytokine gene delivery Lupus 1995 4: 286–292

    Article  CAS  Google Scholar 

  13. Giladi E et al. Transforming growth factor-beta gene therapy ameliorates experimental colitis in rats Eur J Gastroenterol Hepatol 1995 7: 341–347

    CAS  PubMed  Google Scholar 

  14. Haworth C, Maini RN, Feldmann M . Cytokine and anti-cytokine therapy. In: Thomson A (ed) . The Cytokine Handbook Academic Press: San Diego 1998 777–801

    Google Scholar 

  15. Hartikka J et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle Hum Gene Ther 1996 7: 1205–1217

    Article  CAS  Google Scholar 

  16. Migliorini P, Corradin G, Corradin SB . Macrophage NO2 production as a sensitive and rapid assay for quantitation of murine IFN-gamma J Immunol Meth 1991 139: 107–114

    Article  CAS  Google Scholar 

  17. Havell EA . Purification and further characterization of an anti-murine interferon-gamma monoclonal neutralizing antibody J Interferon Res 1986 6: 489–497

    Article  CAS  Google Scholar 

  18. Cockfield SM, Ramassar V, Urmson J, Halloran PF . Multiple low dose streptozotocin induces systemic MHC expression in mice by triggering T cells to release IFN-gamma J Immunol 1989 142: 1120–1128

    CAS  PubMed  Google Scholar 

  19. Prud’homme GJ . Cytokines and autoimmunity. In: Bona CA, Siminovitch KA, Zanetti M, Theofilopoulos AN (eds) . The Molecular Pathology of Autoimmune Diseases Harwood Academic Publishers: Chur, Switzerland 1993 149–168

    Google Scholar 

  20. Prud’homme GJ . Quantitative polymerase chain reaction analysis reveals marked overexpression of IL-1-beta, IL-10, and interferon-gamma in the lymph nodes of lupus-prone mice Mol Immunol 1995 32: 495–503

    Article  Google Scholar 

  21. Sarvetnick N et al. Loss of pancreatic islet tolerance induced by beta-cell expression of interferon-gamma Nature 1990 346: 844–847

    Article  CAS  Google Scholar 

  22. Wang B et al. Interferon-gamma impacts at multiple points during the progression of autoimmune diabetes Proc Natl Acad Sci USA 1997 94: 13844–13849

    Article  CAS  Google Scholar 

  23. Kürschner C, Ozmen L, Garotta G, Dembic Z . IFN-gamma receptor-Ig fusion proteins. Half-life, immunogenecity, and in vivo activity J Immunol 1992 144: 4096–4100

    Google Scholar 

  24. Baquerizo H, Rabinovitch A . Interferon-gamma sensitizes rat pancreatic islet cells to lysis by cytokines and cytotoxic cells J Autoimmunity 1990 3 (Suppl. 1): 123–130

    Article  Google Scholar 

  25. Pukel C, Baquerizo H, Rabinovitch A . Destructive of rat islet cell monolayers by cytokines. Synergestic interactions of interferon-gamma, tumor necrosis factor, lymphotoxin, and IL-1 Diabetes 1988 37: 133–136

    Article  CAS  Google Scholar 

  26. Heitmeier MR, Scarim AL, Corbett JA . Interferon-gamma increases the sensitivity of islets of Langerhans for inducible nitric-oxide synthase expression induced by IL-1 J Biol Chem 1997 272: 13697–13704

    Article  CAS  Google Scholar 

  27. McDaniel ML et al. Cytokines and nitric oxide in islet inflammation and diabetes Proc Soc Exp Biol Med 1996 211: 24–32

    Article  CAS  Google Scholar 

  28. Cetkovic-Cvrlje M, Eizirik DL . TNF-alpha and IFN-gamma potentiate the deleterious effects of IL-1 beta on mouse pancreatic islets via generation of nitric oxide Cytokine 1994 6: 399–406

    Article  CAS  Google Scholar 

  29. Heller B et al. Analysis of oxygen radical toxicity in pancreatic islets at the single cell level Biol Chem Hoppe-Seyler 1994 375: 597–602

    Article  CAS  Google Scholar 

  30. Lee KU, Amano K, Yoon JW . Evidence for initial involvement of macrophages in development of insulitis in NOD mice Diabetes 1988 37: 989–991

    Article  CAS  Google Scholar 

  31. Haak-Frendscho M et al. Inhibition of interferon-gamma by an interferon-gamma receptor immunoadhesin Immunol 1993 79: 594–599

    CAS  Google Scholar 

  32. Peppel K, Crawford D, Beutler B . A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity J Exp Med 1991 174: 1483–1489

    Article  CAS  Google Scholar 

  33. Kürschner C, Garotta G, Dembic Z . Construction, purification, and characterization of new interferon gamma inhibitor proteins J Biol Chem 1992 267: 9354–9360

    PubMed  Google Scholar 

  34. Capon DJ et al. Designing CD4 immunoadhesins for AIDS therapy Nature 1989 337: 525–531

    Article  CAS  Google Scholar 

  35. Wells KE et al. Immune responses, not promoter inactivation, are responsible for decreased long-term expression following plasmid gene transfer into skeletal muscle FEBS Letts 1997 407: 164–168

    Article  CAS  Google Scholar 

  36. Coligan JE et al. Current Protocols in Immunology. John Wiley and Sons: New York, 1991, pp 8.10.1–8.10 17

    Google Scholar 

  37. Liang L, Beshay E, Prud’homme GJ . The phosphodiesterase inhibitors pentoxifylline and rolipram prevent diabetes in NOD mice Diabetes 1998 47: 570–575

    Article  CAS  Google Scholar 

  38. Herold KC et al. CD28/B7 costimulation regulates autoimmune diabetes induced with multiple low doses of streptozotocin J Immunol 1997 158: 984–991

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prud’homme, G., Chang, Y. Prevention of autoimmune diabetes by intramuscular gene therapy with a nonviral vector encoding an interferon-gamma receptor/IgG1 fusion protein. Gene Ther 6, 771–777 (1999). https://doi.org/10.1038/sj.gt.3300879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300879

Keywords

This article is cited by

Search

Quick links