Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Variation in the immune response to adenoviral vectors in the brain: influence of mouse strain, environmental conditions and priming

Abstract

E1-deleted adenoviral vectors expressing the bacterial β-galactosidase gene were inoculated into the brain of unprimed and primed C3H.He or C57BL/6J mice housed under either conventional or specific-pathogen-free (SPF) conditions. The kinetics of immune responses to both the vector and the transgene were investigated. In mice previously sensitized to adenovirus, the leukocyte infiltrate in the brain was dominated by CD8+ T cells, whereas in unprimed mice CD4+ T cells were present at higher levels. As expected, antibody titres to both adenovirus and β-galactosidase were higher in primed mice than in unprimed mice after intracranial inoculation. C3H.He mice consist- ently made higher antibody responses than C57BL/6J mice. Although adenoviral vectors induced an inflammatory response under all conditions, mice housed in SPF facilities exhibited less inflammation than conventional mice and transgene expression persisted for longer. Irrespective of whether the mice had been deliberately primed to adenovirus, antibody titres were consistently lower in SPF mice compared with conventional mice. This study clearly demonstrates that environmental conditions, as well as previous priming to adenovirus, will affect both the quality and duration of the immune response triggered by gene delivery to the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 8
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Simon RH et al. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: toxicity study Hum Gene Ther 1993 4: 771–780

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y, Li Q, Ertl HCJ, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses J Virol 1995 69: 2004–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses gene transfer Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang Y, Ertl HCJ, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E-1 deleted recombinant adenoviruses Immunity 1994 1: 433–442

    Article  CAS  PubMed  Google Scholar 

  5. Dai Y et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression Proc Natl Acad Sci USA 1995 92: 1401–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Byrnes AP et al. Adenovirus gene transfer causes inflammation in the brain Neuroscience 1995 66: 1015–1024

    Article  CAS  PubMed  Google Scholar 

  7. Byrnes AP, Wood MJA, Charlton HM . Role of T cells in the inflammation caused by adenovirus vectors in the brain Gene Therapy 1996 3: 644–651

    CAS  PubMed  Google Scholar 

  8. Wood MJA et al. Immune responses to adenovirus vectors in the nervous system Trends Neurosci 1996 19: 497–501

    Article  CAS  PubMed  Google Scholar 

  9. Kajiwara K et al. Immune responses to adenoviral vectors during gene transfer in the brain Hum Gene Ther 1997 8: 253–265

    Article  CAS  PubMed  Google Scholar 

  10. Korber B, Mermod N, Hood L, Stroynowski I . Regulation of gene expression by interferons: control of H-2 promoter responses Science 1988 239: 1302–1306

    Article  CAS  PubMed  Google Scholar 

  11. Gribaudo G et al. Interferons inhibit onset of murine cytomegalovirus immediate–early gene transcription Virology 1993 197: 303–311

    Article  CAS  PubMed  Google Scholar 

  12. Harms JS, Splitter GA . Interferon-gamma inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter Hum Gene Ther 1995 6: 1291–1297

    Article  CAS  PubMed  Google Scholar 

  13. Qin L et al. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression Hum Gene Ther 1997 8: 2019–2029

    Article  CAS  PubMed  Google Scholar 

  14. Mack CA et al. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype Hum Gene Ther 1997 8: 99–109

    Article  CAS  PubMed  Google Scholar 

  15. Knight V, Kasel JA . Viral and mycoplasmal infections of the respiratory tract. In: Knight V (ed) . Adenoviruses Lea and Febiger: Philadelphia 1973 65

    Google Scholar 

  16. Williams KA, Hart DNJ, Fabre JW, Morris PJ . Distribution and quantitation of HLA-ABC and DR (Ia) antigens on human kidney and other tissues Transplantation 1980 29: 274–279

    Article  CAS  PubMed  Google Scholar 

  17. Hart DNJ, Fabre JW . Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissue, but not brain J Exp Med 1981 154: 347–361

    Article  CAS  PubMed  Google Scholar 

  18. Matyszak MK, Perry VH . The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system Neuroscience 1996 74: 599–608

    Article  CAS  PubMed  Google Scholar 

  19. Bell MD et al. Recombinant human adenovirus with rat MIP-2 gene insertion causes prolonged PMN recruitment to the murine brain Eur J Neurosci 1996 8: 1803–1811

    Article  CAS  PubMed  Google Scholar 

  20. Steinman RM . The dendritic cell system and its role in immunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  PubMed  Google Scholar 

  21. Akli S et al. Transfer of a foreign gene into the brain using adenovirus vectors Nat Genet 1993 3: 224–228

    Article  CAS  PubMed  Google Scholar 

  22. Davidson BL et al. A model system for in vivo gene transfer into the CNS using an adenoviral vector Nat Genet 1993 3: 219–223

    CAS  PubMed  Google Scholar 

  23. Geddes BJ, Harding TC, Lightman SL, Uney JB . Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin Nature Med 1997 3: 1402–1404

    Article  CAS  PubMed  Google Scholar 

  24. Horellou P, Sabaté O, Buc-Caron M-H, Mallet J . Adenovirus-mediated gene transfer to the central nervous system for Parkinson’s disease Exp Neurol 1997 144: 131–138

    Article  CAS  PubMed  Google Scholar 

  25. Byrnes AP, Maclaren RE, Charlton HM . Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene expression and demyelination J Neurosci 1996 16: 3045–3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stratford-Perricaudet LD et al. Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector Hum Gene Ther 1990 1: 241–256

    Article  CAS  PubMed  Google Scholar 

  27. Rosenfeld MA et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo Science 1991 252: 431–434

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y et al. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis Nat Genet 1994 7: 362–369

    Article  CAS  PubMed  Google Scholar 

  29. Karougliak V, Graham FL . Development of cell lines capable of complementing E1, E4 and protein IX defective adenovirus type 5 mutants Hum Gene Ther 1995 6: 1575–1586

    Article  Google Scholar 

  30. Wang Q, Finer MH . Second-generation adenovirus vectors Nature Med 1996 2: 714–716

    Article  CAS  PubMed  Google Scholar 

  31. Wang Q et al. Persistent transgene expression in mouse liver following in vivo gene transfer with a ΔE1/ΔE4 adenovirus vector Gene Therapy 1997 4: 393–400

    Article  CAS  PubMed  Google Scholar 

  32. Schowalter DB et al. Constitutive expression of murine CTLA4Ig from a recombinant adenovirus vector results in prolonged transgene expression Gene Therapy 1997 4: 853–860

    Article  CAS  PubMed  Google Scholar 

  33. Qin L et al. Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen Hum Gene Ther 1997 8: 1365–1374

    Article  CAS  PubMed  Google Scholar 

  34. Jooss K, Yang Y, Wilson JM . Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung Hum Gene Ther 1996 7: 1555–1566

    Article  CAS  PubMed  Google Scholar 

  35. Cichon G, Strauss M . Transient immunosuppression with 15-deoxyspergualin prolongs reporter gene expression and reduces humoral immune response after adenoviral gene transfer Gene Therapy 1998 5: 85–90

    Article  CAS  PubMed  Google Scholar 

  36. Bushell A, Morris PJ, Wood KJ . Transplantation tolerance induced by antigen pretreatment and depleting anti-CD4 antibody depends on CD4+ T cell regulation during the induction phase of the response Eur J Immunol 1995 25: 2643–2649

    Article  CAS  PubMed  Google Scholar 

  37. Guérette B et al. Prevention of immune reactions triggered by first-generation adenoviral vectors by monoclonal antibodies and CTLA4Ig Hum Gene Ther 1996 7: 1455–1463

    Article  PubMed  Google Scholar 

  38. Jooss K, Turka LA, Wilson JM . Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig Gene Therapy 1998 5: 309–319

    Article  CAS  PubMed  Google Scholar 

  39. Kägi D et al. Cytotoxic mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice Nature 1994 369: 31–37

    Article  PubMed  Google Scholar 

  40. Cardin RD, Brooks JW, Sarawar SR, Doherty PC . Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cell J Exp Med 1996 184: 863–871

    Article  CAS  PubMed  Google Scholar 

  41. Nash AA, Sunil-Chandra NP . Interactions of murine gammaherpesvirus with the immune system Curr Opin Immunol 1994 6: 560–563

    Article  CAS  PubMed  Google Scholar 

  42. Bender BS, Croghan T, Zhang L, Small PA Jr . Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge J Exp Med 1992 175: 1143–1145

    Article  CAS  PubMed  Google Scholar 

  43. Graham MB, Braciale VL, Braciale TJ . Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection J Exp Med 1994 180: 1273–1282

    Article  CAS  PubMed  Google Scholar 

  44. Tripp RA, Safawar SR, Doherty PC . Characteristics of the influenza virus specific CD8+ T cell response in mice homozygous for disruption of the H-2 IAb gene J Immunol 1995 155: 2955–2959

    CAS  PubMed  Google Scholar 

  45. Stevenson PG, Hawke S, Sloan DJ, Brangham RM . The immunogenicity of intracerebral virus infection depends on anatomical site J Virol 1997 71: 145–151

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang Y, Wilson JM . Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo J Immunol 1995 155: 2564–2570

    CAS  PubMed  Google Scholar 

  47. Müllbacher A, Blanden RV . Murine cytotoxic T-cell response to alphavirus is associated mainly with H-2Dk Immunogenetics 1978 7: 551–561

    Article  PubMed  Google Scholar 

  48. Ashman RB . Persistence of cell-mediated immunity to influenza A virus in mice Immunology 1982 47: 165–168

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jamieson BD, Ahmed R . T cell memory. Long-term persistence of virus-specific cytotoxic T cells J Exp Med 1989 169: 1993–2005

    Article  CAS  PubMed  Google Scholar 

  50. Madsen JC, Wood KJ, Morris PJ . Effects of anti-L3T4 and anti-LYT2 monoclonal antibody therapy on cardiac allograft survival in presensitized recipients Transplant Proc 1989 21: 1022

    CAS  PubMed  Google Scholar 

  51. Razvi ES, Welsh RM, Mcfarland HI . In vivo state of antiviral CTL precursors J Immunol 1995 154: 620–632

    CAS  PubMed  Google Scholar 

  52. Yang H, Welsh RM . Induction of alloreactive cytotoxic T cells by acute virus infection of mice J Immunol 1986 136: 1186–1193

    CAS  PubMed  Google Scholar 

  53. Yang H, Dundon PL, Nahill SR, Welsh RM . Virus-indiced polyclonal cytotoxic T lymphocytes stimulation J Immunol 1989 142: 1710–1718

    CAS  PubMed  Google Scholar 

  54. Tough DF, Sprent J . Virus and T cell turnover: evidence for bystander proliferation Immunol Rev 1996 150: 129–142

    Article  CAS  PubMed  Google Scholar 

  55. Lule J et al. The spontaneous development of immune complex type glomerular lesions in outbred mice is dependent on environmental factors and sex J Clin Lab Immunol 1989 29: 111–118

    CAS  PubMed  Google Scholar 

  56. Allansmith MR et al. The immune response of the lacrimal grand to antigenic exposure Curr Eye Res 1987 6: 921–927

    Article  CAS  PubMed  Google Scholar 

  57. Gallimore A et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes J Exp Med 1998 187: 1383–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McMichael AJ . T cell responses and viral escape Cell 1998 93: 673–676

    Article  CAS  PubMed  Google Scholar 

  59. Barr D et al. Strain-related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains Gene Therapy 1995 2: 151–155

    CAS  PubMed  Google Scholar 

  60. Demant P, Lipoldova M, Svobodova M . Resistance to Leishmania major in mice Science 1996 274: 1392–1393

    Article  CAS  PubMed  Google Scholar 

  61. Gorham JD et al. Genetic mapping of a murine locus controlling development of T helper 1/T helper 2 type responses Proc Natl Acad Sci USA 1996 93: 12467–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rawle FC et al. Specificity of the mouse cytotoxic T lymphocyte response to adenovirus type 5 J Immunol 1991 146: 3977–3984

    CAS  PubMed  Google Scholar 

  63. Kaplan JM et al. Characterization of factors involved in modulating persistence of transgene expression from recombinant adenovirus in the mouse lung Hum Gene Ther 1997 8: 45–56

    Article  CAS  PubMed  Google Scholar 

  64. Alpers JH, Steward MW, Soothill JF . Differences in immune elimination in inbred mice Clin Exp Immunol 1972 12: 121–132

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Smith TAG et al. Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice Nat Genet 1993 5: 397–402

    Article  CAS  PubMed  Google Scholar 

  66. Juillard V et al. Long-term humoral and cellular immunity induced by a signal immunization with replication-defective adenovirus recombinant vector Eur J Immunol 1995 25: 3467–3473

    Article  CAS  PubMed  Google Scholar 

  67. Michou AI et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression Gene Therapy 1997 4: 473–482

    Article  CAS  PubMed  Google Scholar 

  68. Springer T, Galfé G, Secher DS, Milstein C . Monoclonal xenogenic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens Eur J Immunol 1978 8: 539–551

    Article  CAS  PubMed  Google Scholar 

  69. Tomonari K . A rat antibody against a structure functionally related to the mouse T-cell receptor/T3 complex Immunogenetics 1988 28: 455–458

    Article  CAS  PubMed  Google Scholar 

  70. Qin S et al. CD4 monoclonal antibody pairs for immunosuppression and tolerance induction Eur J Immunol 1987 17: 1159–1165

    Article  CAS  PubMed  Google Scholar 

  71. Cobbold SP et al. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo Nature 1984 312: 548–551

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmoto, Y., Wood, M., Charlton, H. et al. Variation in the immune response to adenoviral vectors in the brain: influence of mouse strain, environmental conditions and priming. Gene Ther 6, 471–481 (1999). https://doi.org/10.1038/sj.gt.3300851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300851

Keywords

This article is cited by

Search

Quick links