Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

FLT3 regulates β-catenin tyrosine phosphorylation, nuclear localization, and transcriptional activity in acute myeloid leukemia cells

Abstract

Deregulated accumulation of nuclear β-catenin enhances transcription of β-catenin target genes and promotes malignant transformation. Recently, acute myeloid leukemia (AML) cells with activating mutations of FMS-like tyrosine kinase-3 (FLT3) were reported to display elevated β-catenin-dependent nuclear signaling. Tyrosine phosphorylation of β-catenin has been shown to promote its nuclear localization. Here, we examined the causal relationship between FLT3 activity and β-catenin nuclear localization. Compared to cells with wild-type FLT3 (FLT3-WT), cells with the FLT3 internal tandem duplication (FLT3-ITD) and tyrosine kinase domain mutation (FLT3-TKD) had elevated levels of tyrosine-phosphorylated β-catenin. Although β-catenin was localized mainly in the cytoplasm in FLT3-WT cells, it was primarily nuclear in FLT3-ITD cells. Treatment with FLT3 kinase inhibitors or FLT3 silencing with RNAi decreased β-catenin tyrosine phosphorylation and nuclear localization. Conversely, treatment of FLT3-WT cells with FLT3 ligand increased tyrosine phosphorylation and nuclear accumulation of β-catenin. Endogenous β-catenin co-immunoprecipitated with endogenous activated FLT3, and recombinant activated FLT3 directly phosphorylated recombinant β-catenin. Finally, FLT3 inhibitor decreased tyrosine phosphorylation of β-catenin in leukemia cells obtained from FLT3-ITD-positive AML patients. These data demonstrate that FLT3 activation induces β-catenin tyrosine phosphorylation and nuclear localization, and thus suggest a mechanism for the association of FLT3 activation and β-catenin oncogeneic signaling in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 1993; 75: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  2. Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 1994; 368: 643–648.

    Article  CAS  PubMed  Google Scholar 

  3. Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O . FLT3 signaling in hematopoietic cells involves CBL, SHC and an unknown P115 as prominent tyrosine-phosphorylated substrates. Leukemia 1998; 12: 301–310.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang S, Broxmeyer HE . Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochem Biophys Res Commun 2000; 277: 195–199.

    Article  CAS  PubMed  Google Scholar 

  5. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  6. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  7. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94.

    Article  CAS  PubMed  Google Scholar 

  8. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  PubMed  Google Scholar 

  9. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  11. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  PubMed  Google Scholar 

  12. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337.

    Article  CAS  PubMed  Google Scholar 

  13. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T . Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563.

    Article  CAS  PubMed  Google Scholar 

  14. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  15. Nakano Y, Kiyoi H, Miyawaki S, Asou N, Ohno R, Saito H et al. Molecular evolution of acute myeloid leukaemia in relapse: unstable-and FLT3 genes compared with p53 gene. Br J Haematol 1999; 104: 659–664.

    Article  CAS  PubMed  Google Scholar 

  16. Ozawa M, Baribault H, Kemler R . The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989; 8: 1711–1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM . The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol 1992; 118: 681–691.

    Article  CAS  PubMed  Google Scholar 

  18. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96: 5522–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382: 638–642.

    Article  CAS  PubMed  Google Scholar 

  20. Bienz M, Clevers H . Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  21. Barker N, Clevers H . Catenins, Wnt signaling and cancer. Bioessays 2000; 22: 961–965.

    Article  CAS  PubMed  Google Scholar 

  22. Easwaran V, Song V, Polakis P, Byers S . The ubiquitin-proteasome pathway and serine kinase activity modulate adenomatous polyposis coli protein-mediated regulation of beta-catenin-lymphocyte enhancer-binding factor signaling. J Biol Chem 1999; 274: 16641–16645.

    Article  CAS  PubMed  Google Scholar 

  23. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16: 3797–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tetsu O, McCormick F . Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  25. Piedra J, Martinez D, Castano J, Miravet S, Dunach M, de Herreros AG . Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 2001; 276: 20436–20443.

    Article  CAS  PubMed  Google Scholar 

  26. Danilkovitch-Miagkova A, Miagkov A, Skeel A, Nakaigawa N, Zbar B, Leonard EJ . Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the beta-catenin pathway. Mol Cell Biol 2001; 21: 5857–5868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McWhirter JR, Neuteboom ST, Wancewicz EV, Monia BP, Downing JR, Murre C . Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 1999; 96: 11464–11469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung EJ, Hwang SG, Nguyen P, Lee S, Kim JS, Kim JW et al. Regulation of leukemic cell adhesion, proliferation, and survival by beta-catenin. Blood 2002; 100: 982–990.

    Article  CAS  PubMed  Google Scholar 

  29. Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 2004; 101: 6122–6127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 3118–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simon M, Grandage VL, Linch DC, Khwaja A . Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 2005; 24: 2410–2420.

    Article  CAS  PubMed  Google Scholar 

  32. Tickenbrock L, Schwable J, Wiedehage M, Steffen B, Sargin B, Choudhary C et al. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 2005; 105: 3699–3706.

    Article  CAS  PubMed  Google Scholar 

  33. Bonvini P, An WG, Rosolen A, Nguyen P, Trepel J, Garcia de Herreros A et al. Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription. Cancer Res 2001; 61: 1671–1677.

    CAS  PubMed  Google Scholar 

  34. Ilan N, Tucker A, Madri JA . Vascular endothelial growth factor expression, beta-catenin tyrosine phosphorylation, and endothelial proliferative behavior: a pathway for transformation? Lab Invest 2003; 83: 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao M, Kiyoi H, Yamamoto Y, Ito M, Towatari M, Omura S et al. In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor. Leukemia 2000; 14: 374–378.

    Article  CAS  PubMed  Google Scholar 

  36. Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J . Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood 2003; 102: 646–651.

    Article  CAS  PubMed  Google Scholar 

  37. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  PubMed  Google Scholar 

  38. Harris TJ, Peifer M . Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends Cell Biol 2005; 15: 234–237.

    Article  CAS  PubMed  Google Scholar 

  39. Polakis P . Wnt signaling and cancer. Genes Dev 2000; 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  40. Aberle H, Schwartz H, Hoschuetzky H, Kemler R . Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to alpha-catenin. J Biol Chem 1996; 271: 1520–1526.

    Article  CAS  PubMed  Google Scholar 

  41. Aono S, Nakagawa S, Reynolds AB, Takeichi M . p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J Cell Biol 1999; 145: 551–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krieghoff E, Behrens J, Mayr B . Nucleo-cytoplasmic distribution of {beta}-catenin is regulated by retention. J Cell Sci 2006; 119: 1453–1463.

    Article  CAS  PubMed  Google Scholar 

  43. Brembeck FH, Schwarz-Romond T, Bakkers J, Wilhelm S, Hammerschmidt M, Birchmeier W . Essential role of BCL9-2 in the switch between beta-catenin's adhesive and transcriptional functions. Genes Dev 2004; 18: 2225–2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M . Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274: 36734–36740.

    Article  CAS  PubMed  Google Scholar 

  45. Zinser GM, Leonis MA, Toney K, Pathrose P, Thobe M, Kader SA et al. Mammary-specific Ron receptor overexpression induces highly metastatic mammary tumors associated with beta-catenin activation. Cancer Res 2006; 66: 11967–11974.

    Article  CAS  PubMed  Google Scholar 

  46. Chalandon Y, Schwaller J . Targeting mutated protein tyrosine kinases and their signaling pathways in hematologic malignancies. Haematologica 2005; 90: 949–968.

    CAS  PubMed  Google Scholar 

  47. Coluccia AM, Vacca A, Dunach M, Mologni L, Redaelli S, Bustos VH, Benati D, Pinna LA, Gambacorti-Passerini C . Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 2007; 26: 1456–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H, Rooney MD et al. Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 7516–7521.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Kazutaka Ozeki, Nagoya University School of Medicine, for his help in preparing MOLM-13 cells and stably transfected 32D cell lines. This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research. Support was also provided to TK by the Sumitomo Life Social Welfare Sciences Foundation. Statement of authorship: TK, LN, MJL, JBT designed research , TK, EJC, MJL, SL, AS performed research, TK wrote the paper, and HK, MJL, TN contributed vital new reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kajiguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiguchi, T., Chung, E., Lee, S. et al. FLT3 regulates β-catenin tyrosine phosphorylation, nuclear localization, and transcriptional activity in acute myeloid leukemia cells. Leukemia 21, 2476–2484 (2007). https://doi.org/10.1038/sj.leu.2404923

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404923

Keywords

This article is cited by

Search

Quick links