Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

mRNA stability control: a clandestine force in normal and malignant hematopoiesis

Abstract

This review addresses the scope of influence of mRNA decay on cellular functions and its potential role in normal and malignant hematopoiesis. Evidence is emerging that leukemic oncogenes and hematopoietic cytokines interact with mRNA decay pathways. These pathways can co-regulate functionally related genes through specific motifs in the 3′-untranslated region of targeted transcripts. The steps that link external stimuli to transcript turnover are not fully understood, but include subcellular relocalization or post-transcriptional modification of specific transcript-stabilizing or -destabilizing proteins. Improper functioning of these regulators of mRNA turnover can impede normal cellular differentiation or promote cancers. By delineating how subsets of transcripts decay in synchrony during normal hematopoiesis, it may be possible to determine whether this post-transcriptional regulatory pathway is hijacked in leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Calabretta B, Skorski T . Gene regulatory mechanisms operative on hematopoietic cells: proliferation, differentiation, and neoplasia. Crit Rev Eukaryot Gene Expr 1997; 7: 117–124.

    CAS  PubMed  Google Scholar 

  2. Ono R, Nosaka T, Hayashi Y . Roles of a trithorax group gene, MLL, in hematopoiesis. Int J Hematol 2005; 81: 288–293.

    CAS  PubMed  Google Scholar 

  3. Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 2004; 104: 3136–3147.

    CAS  PubMed  Google Scholar 

  4. Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood 2006; 107: 3359–3370.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Duan Z, Horwitz M . Gfi-1 oncoproteins in hematopoiesis. Hematology 2003; 8: 339–344.

    CAS  PubMed  Google Scholar 

  6. Kloosterman WP, Plasterk RH . The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441–450.

    CAS  PubMed  Google Scholar 

  7. Kluiver J, Kroesen BJ, Poppema S, van den Berg A . The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 2006; 20: 1931–1936.

    CAS  PubMed  Google Scholar 

  8. Trotta R, Vignudelli T, Candini O, Intine RV, Pecorari L, Guerzoni C et al. BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 2003; 3: 145–160.

    CAS  PubMed  Google Scholar 

  9. Notari M, Neviani P, Santhanam R, Blaser BW, Chang JS, Galietta A et al. A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 2006; 107: 2507–2516.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 2002; 30: 48–58.

    CAS  PubMed  Google Scholar 

  11. Perrotti D, Calabretta B . Translational regulation by the p210 BCR/ABL oncoprotein. Oncogene 2004; 23: 3222–3229.

    CAS  PubMed  Google Scholar 

  12. Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA 2004; 101: 13312–13317.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood 2005; 106: 1369–1375.

    CAS  PubMed  Google Scholar 

  14. Timchenko LT, Iakova P, Welm AL, Cai ZJ, Timchenko NA . Calreticulin interacts with C/EBPalpha and C/EBPbeta mRNAs and represses translation of C/EBP proteins. Mol Cell Biol 2002; 22: 7242–7257.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Keene JD, Tenenbaum SA . Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 2002; 9: 1161–1167.

    CAS  PubMed  Google Scholar 

  16. Conne B, Stutz A, Vassalli JD . The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 2000; 6: 637–641.

    CAS  PubMed  Google Scholar 

  17. Jacobson A . Regulation of mRNA decay: decapping goes solo. Mol Cell 2004; 15: 1–2.

    CAS  PubMed  Google Scholar 

  18. Zhao Z, Chang FC, Furneaux HM . The identification of an endonuclease that cleaves within an HuR binding site in mRNA. Nucleic Acids Res 2000; 28: 2695–2701.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bakheet T, Williams BR, Khabar KS . ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 2006; 34: D111–D114.

    CAS  PubMed  Google Scholar 

  20. Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D . The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 1997; 91: 457–466.

    CAS  PubMed  Google Scholar 

  21. Lejeune F, Li X, Maquat LE . Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 2003; 12: 675–687.

    CAS  PubMed  Google Scholar 

  22. Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, Karin M et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 2004; 14: 571–583.

    CAS  PubMed  Google Scholar 

  23. Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A . Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 1986; 83: 1670–1674.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shaw G, Kamen R . A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659–667.

    CAS  PubMed  Google Scholar 

  25. Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A . Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol 2003; 195: 356–372.

    CAS  PubMed  Google Scholar 

  26. Houzet L, Morello D, Defrance P, Mercier P, Huez G, Kruys V . Regulated control by granulocyte–macrophage colony-stimulating factor AU-rich element during mouse embryogenesis. Blood 2001; 98: 1281–1288.

    CAS  PubMed  Google Scholar 

  27. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G . Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10: 387–398.

    CAS  PubMed  Google Scholar 

  28. Chen CY, Shyu AB . Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol Cell Biol 1994; 14: 8471–8482.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu N, Chen CY, Shyu AB . Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 1997; 17: 4611–4621.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zubiaga AM, Belasco JG, Greenberg ME . The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 1995; 15: 2219–2230.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lagnado CA, Brown CY, Goodall GJ . AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol 1994; 14: 7984–7995.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stoecklin G, Hahn S, Moroni C . Functional hierarchy of AUUUA motifs in mediating rapid interleukin-3 mRNA decay. J Biol Chem 1994; 269: 28591–28597.

    CAS  PubMed  Google Scholar 

  33. Chen CY, Xu N, Shyu AB . Highly selective actions of HuR in antagonizing AU-rich element-mediated mRNA destabilization. Mol Cell Biol 2002; 22: 7268–7278.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu N, Chen CY, Shyu AB . Versatile role for hnRNP D isoforms in the differential regulation of cytoplasmic mRNA turnover. Mol Cell Biol 2001; 21: 6960–6971.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Park-Lee S, Kim S, Laird-Offringa IA . Characterization of the interaction between neuronal RNA-binding protein HuD and AU-rich RNA. J Biol Chem 2003; 278: 39801–39808.

    CAS  PubMed  Google Scholar 

  36. Lopez de Silanes I, Zhan M, Lal A, Yang X, Gorospe M . Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 2004; 101: 2987–2992.

    PubMed  Google Scholar 

  37. White EK, Moore-Jarrett T, Ruley HE . PUM2, a novel murine puf protein, and its consensus RNA-binding site. RNA 2001; 7: 1855–1866.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ragheb JA, Deen M, Schwartz RH . CD28-Mediated regulation of mRNA stability requires sequences within the coding region of the IL-2 mRNA. J Immunol 1999; 163: 120–129.

    CAS  PubMed  Google Scholar 

  39. Tebo JM, Datta S, Kishore R, Kolosov M, Major JA, Ohmori Y et al. Interleukin-1-mediated stabilization of mouse KC mRNA depends on sequences in both 5′- and 3′-untranslated regions. J Biol Chem 2000; 275: 12987–12993.

    CAS  PubMed  Google Scholar 

  40. Paschoud S, Dogar AM, Kuntz C, Grisoni-Neupert B, Richman L, Kuhn LC . Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol 2006; 26: 8228–8241.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kong J, Sumaroka M, Eastmond DL, Liebhaber SA . Shared stabilization functions of pyrimidine-rich determinants in the erythroid 15-lipoxygenase and alpha-globin mRNAs. Mol Cell Biol 2006; 26: 5603–5614.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder M, Magnasco M et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res 2003; 13: 1863–1872.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lal A, Abdelmohsen K, Pullmann R, Kawai T, Galban S, Yang X et al. Posttranscriptional derepression of GADD45alpha by genotoxic stress. Mol Cell 2006; 22: 117–128.

    CAS  PubMed  Google Scholar 

  44. Liu J, Shen X, Nguyen VA, Kunos G, Gao B . Alpha(1) adrenergic agonist induction of p21(waf1/cip1) mRNA stability in transfected HepG2 cells correlates with the increased binding of an AU-rich element binding factor. J Biol Chem 2000; 275: 11846–11851.

    CAS  PubMed  Google Scholar 

  45. Yang X, Wang W, Fan J, Lal A, Yang D, Cheng H et al. Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. J Biol Chem 2004; 279: 49298–49306.

    CAS  PubMed  Google Scholar 

  46. Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y et al. HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 2000; 20: 760–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Figueroa A, Cuadrado A, Fan J, Atasoy U, Muscat GE, Munoz-Canoves P et al. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol Cell Biol 2003; 23: 4991–5004.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yano M, Okano HJ, Okano H . Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation. J Biol Chem 2005; 280: 12690–12699.

    CAS  PubMed  Google Scholar 

  49. Giles KM, Daly JM, Beveridge DJ, Thomson AM, Voon DC, Furneaux HM et al. The 3′-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J Biol Chem 2003; 278: 2937–2946.

    CAS  PubMed  Google Scholar 

  50. Gorodkin J, Stricklin SL, Stormo GD . Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Res 2001; 29: 2135–2144.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Meisner NC, Hackermuller J, Uhl V, Aszodi A, Jaritz M, Auer M . mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. Chembiochem 2004; 5: 1432–1447.

    CAS  PubMed  Google Scholar 

  52. Gerber AP, Herschlag D, Brown PO . Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2004; 2: E79.

    PubMed  PubMed Central  Google Scholar 

  53. Houshmandi SS, Olivas WM . Yeast Puf3 mutants reveal the complexity of Puf-RNA binding and identify a loop required for regulation of mRNA decay. RNA 2005; 11: 1655–1666.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fialcowitz EJ, Brewer BY, Keenan BP, Wilson GM . A hairpin-like structure within an AU-rich mRNA-destabilizing element regulates trans-factor binding selectivity and mRNA decay kinetics. J Biol Chem 2005; 280: 22406–22417.

    CAS  PubMed  Google Scholar 

  55. Han LY, Cai CZ, Lo SL, Chung MC, Chen YZ . Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. RNA 2004; 10: 355–368.

    PubMed  PubMed Central  Google Scholar 

  56. Anantharaman V, Koonin EV, Aravind L . Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 2002; 30: 1427–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fan XC, Steitz JA . Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 1998; 17: 3448–3460.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma WJ, Chung S, Furneaux H . The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. Nucleic Acids Res 1997; 25: 3564–3569.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Katsanou V, Papadaki O, Milatos S, Blackshear PJ, Anderson P, Kollias G et al. HuR as a negative posttranscriptional modulator in inflammation. Mol Cell 2005; 19: 777–789.

    CAS  PubMed  Google Scholar 

  60. Tebo J, Der S, Frevel M, Khabar KS, Williams BR, Hamilton TA . Heterogeneity in control of mRNA stability by AU-rich elements. J Biol Chem 2003; 278: 12085–12093.

    CAS  PubMed  Google Scholar 

  61. Gallouzi IE, Brennan CM, Stenberg MG, Swanson MS, Eversole A, Maizels N et al. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc Natl Acad Sci USA 2000; 97: 3073–3078.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheflin LG, Zhang W, Spaulding SW . Androgen regulates the level and subcellular distribution of the AU-rich ribonucleic acid-binding protein HuR both in vitro and in vivo. Endocrinology 2001; 142: 2361–2368.

    CAS  PubMed  Google Scholar 

  63. Sheflin LG, Spaulding SW . Testosterone and dihydrotestosterone regulate AUF1 isoforms in a tissue-specific fashion in the mouse. Am J Physiol Endocrinol Metab 2000; 278: E50–E57.

    CAS  PubMed  Google Scholar 

  64. Jeyaraj SC, Dakhlallah D, Hill SR, Lee BS . Expression and distribution of HuR during ATP depletion and recovery in proximal tubule cells. Am J Physiol Renal Physiol 2006; 291: F1255–F1263.

    CAS  PubMed  Google Scholar 

  65. Brennan CM, Gallouzi IE, Steitz JA . Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol 2000; 151: 1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rebane A, Aab A, Steitz JA . Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA 2004; 10: 590–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Anagnou NP, Ley TJ, Chesbro B, Wright G, Kitchens C, Liebhaber S et al. Acquired alpha-thalassemia in preleukemia is due to decreased expression of all four alpha-globin genes. Proc Natl Acad Sci USA 1983; 80: 6051–6055.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang W, Fan J, Yang X, Furer-Galban S, Lopez de Silanes I, von Kobbe C et al. AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 2002; 22: 3425–3436.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, Aswad DW et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J Biol Chem 2002; 277: 44623–44630.

    CAS  PubMed  Google Scholar 

  70. Levy NS, Chung S, Furneaux H, Levy AP . Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 1998; 273: 6417–6423.

    CAS  PubMed  Google Scholar 

  71. Wang W, Caldwell MC, Lin S, Furneaux H, Gorospe M . HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J 2000; 19: 2340–2350.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Atasoy U, Watson J, Patel D, Keene JD . ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T cell activation. J Cell Sci 1998; 111: 3145–3156.

    CAS  PubMed  Google Scholar 

  73. Suswam EA, Nabors LB, Huang Y, Yang X, King PH . IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3′ untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. Int J Cancer 2005; 113: 911–919.

    CAS  PubMed  Google Scholar 

  74. Wang W, Yang X, Cristofalo VJ, Holbrook NJ, Gorospe M . Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. Mol Cell Biol 2001; 21: 5889–5898.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu JY, Schneider RJ . Tissue distribution of AU-rich mRNA-binding proteins involved in regulation of mRNA decay. J Biol Chem 2004; 279: 12974–12979.

    CAS  PubMed  Google Scholar 

  76. Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, Gorospe M . Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 2004; 23: 3092–3102.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan YX, Chen H, Kilberg MS . Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3′-untranslated region regulates its amino acid limitation-induced stabilization. J Biol Chem 2005; 280: 34609–34616.

    CAS  PubMed  Google Scholar 

  78. Simon M, Grandage VL, Linch DC, Khwaja A . Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 2005; 24: 2410–2420.

    CAS  PubMed  Google Scholar 

  79. Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 2004; 101: 6122–6127.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C . Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006; 7: 1048–1056.

    CAS  PubMed  Google Scholar 

  81. Briata P, Ilengo C, Corte G, Moroni C, Rosenfeld MG, Chen CY et al. The Wnt/beta-catenin-->Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell 2003; 12: 1201–1211.

    CAS  PubMed  Google Scholar 

  82. Lopez de Silanes I, Fan J, Yang X, Zonderman AB, Potapova O, Pizer ES et al. Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene 2003; 22: 7146–7154.

    CAS  PubMed  Google Scholar 

  83. Gherzi R, Trabucchi M, Ponassi M, Ruggiero T, Corte G, Moroni C et al. The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biol 2006; 5: e5.

    PubMed  PubMed Central  Google Scholar 

  84. Lee HK, Jeong S . Beta-catenin stabilizes cyclooxygenase-2 mRNA by interacting with AU-rich elements of 3′-UTR. Nucleic Acids Res 2006; 34: 5705–5714.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dixon DA, Tolley ND, King PH, Nabors LB, McIntyre TM, Zimmerman GA et al. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 2001; 108: 1657–1665.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nabors LB, Gillespie GY, Harkins L, King PH . HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 2001; 61: 2154–2161.

    CAS  PubMed  Google Scholar 

  87. Denkert C, Weichert W, Winzer KJ, Muller BM, Noske A, Niesporek S et al. Expression of the ELAV-like protein HuR is associated with higher tumor grade and increased cyclooxygenase-2 expression in human breast carcinoma. Clin Cancer Res 2004; 10: 5580–5586.

    CAS  PubMed  Google Scholar 

  88. Erkinheimo TL, Lassus H, Sivula A, Sengupta S, Furneaux H, Hla T et al. Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma. Cancer Res 2003; 63: 7591–7594.

    CAS  PubMed  Google Scholar 

  89. Ratti A, Fallini C, Cova L, Fantozzi R, Calzarossa C, Zennaro E et al. A role for the ELAV RNA-binding proteins in neural stem cells: stabilization of Msi1 mRNA. J Cell Sci 2006; 119: 1442–1452.

    CAS  PubMed  Google Scholar 

  90. Shu L, Yan W, Chen X . RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev 2006; 20: 2961–2972.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Paulding WR, Czyzyk-Krzeska MF . Regulation of tyrosine hydroxylase mRNA stability by protein-binding, pyrimidine-rich sequence in the 3′-untranslated region. J Biol Chem 1999; 274: 2532–2538.

    CAS  PubMed  Google Scholar 

  92. Shi L, Zhao G, Qiu D, Godfrey WR, Vogel H, Rando TA et al. NF90 regulates cell cycle exit and terminal myogenic differentiation by direct binding to the 3′-untranslated region of MyoD and p21WAF1/CIP1 mRNAs. J Biol Chem 2005; 280: 18981–18989.

    CAS  PubMed  Google Scholar 

  93. Shim J, Lim H, J RY, Karin M . Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol Cell 2002; 10: 1331–1344.

    CAS  PubMed  Google Scholar 

  94. Sengupta TK, Bandyopadhyay S, Fernandes DJ, Spicer EK . Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization. J Biol Chem 2004; 279: 10855–10863.

    CAS  PubMed  Google Scholar 

  95. Kosinski PA, Laughlin J, Singh K, Covey LR . A complex containing polypyrimidine tract-binding protein is involved in regulating the stability of CD40 ligand (CD154) mRNA. J Immunol 2003; 170: 979–988.

    CAS  PubMed  Google Scholar 

  96. Singh K, Laughlin J, Kosinski PA, Covey LR . Nucleolin is a second component of the CD154 mRNA stability complex that regulates mRNA turnover in activated T cells. J Immunol 2004; 173: 976–985.

    CAS  PubMed  Google Scholar 

  97. Jiang Y, Xu XS, Russell JE . A nucleolin-binding 3′ untranslated region element stabilizes beta-globin mRNA in vivo. Mol Cell Biol 2006; 26: 2419–2429.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Makeyev AV, Liebhaber SA . The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 2002; 8: 265–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ginisty H, Sicard H, Roger B, Bouvet P . Structure and functions of nucleolin. J Cell Sci 1999; 112: 761–772.

    CAS  PubMed  Google Scholar 

  100. Kedersha N, Anderson P . Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 2002; 30: 963–969.

    CAS  PubMed  Google Scholar 

  101. Kimball SR, Horetsky RL, Ron D, Jefferson LS, Harding HP . Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Cell Physiol 2003; 284: C273–C284.

    CAS  PubMed  Google Scholar 

  102. Lai WS, Kennington EA, Blackshear PJ . Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol 2003; 23: 3798–3812.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lykke-Andersen J, Wagner E . Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 2005; 19: 351–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005; 120: 623–634.

    CAS  PubMed  Google Scholar 

  105. Lu JY, Sadri N, Schneider RJ . Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 2006; 20: 3174–3184.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Buzby JS, Brewer G, Nugent DJ . Developmental regulation of RNA transcript destabilization by A + U-rich elements is AUF1-dependent. J Biol Chem 1999; 274: 33973–33978.

    CAS  PubMed  Google Scholar 

  107. Buzby JS, Lee SM, Van Winkle P, DeMaria CT, Brewer G, Cairo MS . Increased granulocyte–macrophage colony-stimulating factor mRNA instability in cord versus adult mononuclear cells is translation-dependent and associated with increased levels of A + U-rich element binding factor. Blood 1996; 88: 2889–2897.

    CAS  PubMed  Google Scholar 

  108. Pullmann Jr R, Abdelmohsen K, Lal A, Martindale JL, Ladner RD, Gorospe M . Differential stability of thymidylate synthase 3′-untranslated region polymorphic variants regulated by AUF1. J Biol Chem 2006; 281: 23456–23463.

    CAS  PubMed  Google Scholar 

  109. Brewer G . An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol Cell Biol 1991; 11: 2460–2466.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang W, Wagner BJ, Ehrenman K, Schaefer AW, DeMaria CT, Crater D et al. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol 1993; 13: 7652–7665.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wilson GM, Sun Y, Lu H, Brewer G . Assembly of AUF1 oligomers on U-rich RNA targets by sequential dimer association. J Biol Chem 1999; 274: 33374–33381.

    CAS  PubMed  Google Scholar 

  112. Wilson GM, Sutphen K, Moutafis M, Sinha S, Brewer G . Structural remodeling of an A + U-rich RNA element by cation or AUF1 binding. J Biol Chem 2001; 276: 38400–38409.

    CAS  PubMed  Google Scholar 

  113. Wilson GM, Lu J, Sutphen K, Suarez Y, Sinha S, Brewer B et al. Phosphorylation of p40AUF1 regulates binding to A + U-rich mRNA-destabilizing elements and protein-induced changes in ribonucleoprotein structure. J Biol Chem 2003; 278: 33039–33048.

    CAS  PubMed  Google Scholar 

  114. Wagner BJ, DeMaria CT, Sun Y, Wilson GM, Brewer G . Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics 1998; 48: 195–202.

    CAS  PubMed  Google Scholar 

  115. Laroia G, Schneider RJ . Alternate exon insertion controls selective ubiquitination and degradation of different AUF1 protein isoforms. Nucleic Acids Res 2002; 30: 3052–3058.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Laroia G, Cuesta R, Brewer G, Schneider RJ . Control of mRNA decay by heat shock–ubiquitin–proteasome pathway. Science 1999; 284: 499–502.

    CAS  PubMed  Google Scholar 

  117. Laroia G, Sarkar B, Schneider RJ . Ubiquitin-dependent mechanism regulates rapid turnover of AU-rich cytokine mRNAs. Proc Natl Acad Sci USA 2002; 99: 1842–1846.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Raineri I, Wegmueller D, Gross B, Certa U, Moroni C . Roles of AUF1 isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA interference. Nucleic Acids Res 2004; 32: 1279–1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sarkar B, Xi Q, He C, Schneider RJ . Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Mol Cell Biol 2003; 23: 6685–6693.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang W, Martindale JL, Yang X, Chrest FJ, Gorospe M . Increased stability of the p16 mRNA with replicative senescence. EMBO Rep 2005; 6: 158–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. He C, Schneider R . 14-3-3sigma is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay. EMBO J 2006; 25: 3823–3831.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu W, Rosenberg GA, Liu KJ . AUF-1 mediates inhibition by nitric oxide of lipopolysaccharide-induced matrix metalloproteinase-9 expression in cultured astrocytes. J Neurosci Res 2006; 84: 360–369.

    CAS  PubMed  Google Scholar 

  123. Gouble A, Grazide S, Meggetto F, Mercier P, Delsol G, Morello D . A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res 2002; 62: 1489–1495.

    CAS  PubMed  Google Scholar 

  124. Arao Y, Kuriyama R, Kayama F, Kato S . A nuclear matrix-associated factor, SAF-B, interacts with specific isoforms of AUF1/hnRNP D. Arch Biochem Biophys 2000; 380: 228–236.

    CAS  PubMed  Google Scholar 

  125. Sarkar B, Lu JY, Schneider RJ . Nuclear import and export functions in the different isoforms of the AUF1/heterogeneous nuclear ribonucleoprotein protein family. J Biol Chem 2003; 278: 20700–20707.

    CAS  PubMed  Google Scholar 

  126. Wilson GM, Lu J, Sutphen K, Sun Y, Huynh Y, Brewer G . Regulation of A + U-rich element-directed mRNA turnover involving reversible phosphorylation of AUF1. J Biol Chem 2003; 278: 33029–33038.

    CAS  PubMed  Google Scholar 

  127. Bell O, Gaberman E, Kilav R, Levi R, Cox KB, Molkentin JD et al. The protein phosphatase calcineurin determines basal parathyroid hormone gene expression. Mol Endocrinol 2005; 19: 516–526.

    CAS  PubMed  Google Scholar 

  128. Ming XF, Stoecklin G, Lu M, Looser R, Moroni C . Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 2001; 21: 5778–5789.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Loflin P, Chen CY, Shyu AB . Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Genes Dev 1999; 13: 1884–1897.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun D, Ding A . MyD88-mediated stabilization of interferon-gamma-induced cytokine and chemokine mRNA. Nat Immunol 2006; 7: 375–381.

    CAS  PubMed  Google Scholar 

  131. Frevel MA, Bakheet T, Silva AM, Hissong JG, Khabar KS, Williams BR . p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol 2003; 23: 425–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Raghavan A, Ogilvie RL, Reilly C, Abelson ML, Raghavan S, Vasdewani J et al. Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res 2002; 30: 5529–5538.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lam LT, Pickeral OK, Peng AC, Rosenwald A, Hurt EM, Giltnane JM et al. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2001; 2, RESEARCH0041 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11597333.

  134. Vlasova IA, McNabb J, Raghavan A, Reilly C, Williams DA, Bohjanen KA et al. Coordinate stabilization of growth-regulatory transcripts in T cell malignancies. Genomics 2005; 86: 159–171.

    CAS  PubMed  Google Scholar 

  135. Puig S, Askeland E, Thiele DJ . Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005; 120: 99–110.

    CAS  PubMed  Google Scholar 

  136. Gerber AP, Luschnig S, Krasnow MA, Brown PO, Herschlag D . Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci USA 2006; 103: 4487–4492.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tenenbaum SA, Lager PJ, Carson CC, Keene JD . Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 2002; 26: 191–198.

    CAS  PubMed  Google Scholar 

  138. van der Giessen K, Di-Marco S, Clair E, Gallouzi IE . RNAi-mediated HuR depletion leads to the inhibition of muscle cell differentiation. J Biol Chem 2003; 278: 47119–47128.

    CAS  PubMed  Google Scholar 

  139. Mobarak CD, Anderson KD, Morin M, Beckel-Mitchener A, Rogers SL, Furneaux H et al. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells. Mol Biol Cell 2000; 11: 3191–3203.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Quattrone A, Pascale A, Nogues X, Zhao W, Gusev P, Pacini A et al. Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins. Proc Natl Acad Sci USA 2001; 98: 11668–11673.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Deschenes-Furry J, Angus LM, Belanger G, Mwanjewe J, Jasmin BJ . Role of ELAV-like RNA-binding proteins HuD and HuR in the post-transcriptional regulation of acetylcholinesterase in neurons and skeletal muscle cells. Chem Biol Interact 2005; 157-158: 43–49.

    CAS  PubMed  Google Scholar 

  142. Champelovier P, Pautre V, Elatifi M, Dupre I, Rostaing B, Michoud A et al. Resistance to phorbol ester-induced differentiation in human myeloid leukemia cells: a hypothetic role for the mRNA stabilization process. Leuk Res 2006; 30: 1407–1416.

    CAS  PubMed  Google Scholar 

  143. Briata P, Forcales SV, Ponassi M, Corte G, Chen CY, Karin M et al. p38-Dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol Cell 2005; 20: 891–903.

    CAS  PubMed  Google Scholar 

  144. Tenenbaum SA, Carson CC, Lager PJ, Keene JD . Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 2000; 97: 14085–14090.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Sanchez-Diaz P, Penalva LO . Post-transcription meets post-genomic: the saga of RNA binding proteins in a new era. RNA Biol 2006; 3: 101–109.

    CAS  PubMed  Google Scholar 

  146. Pascale A, Amadio M, Scapagnini G, Lanni C, Racchi M, Provenzani A et al. Neuronal ELAV proteins enhance mRNA stability by a PKCalpha-dependent pathway. Proc Natl Acad Sci USA 2005; 102: 12065–12070.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Blum JL, Samarel AM, Mestril R . Phosphorylation and binding of AUF1 to the 3′-untranslated region of cardiomyocyte SERCA2a mRNA. Am J Physiol Heart Circ Physiol 2005; 289: H2543–H2550.

    CAS  PubMed  Google Scholar 

  148. Wein G, Rossler M, Klug R, Herget T . The 3′-UTR of the mRNA coding for the major protein kinase C substrate MARCKS contains a novel CU-rich element interacting with the mRNA stabilizing factors HuD and HuR. Eur J Biochem 2003; 270: 350–365.

    CAS  PubMed  Google Scholar 

  149. Short S, Tian D, Short ML, Jungmann RA . Structural determinants for post-transcriptional stabilization of lactate dehydrogenase A mRNA by the protein kinase C signal pathway. J Biol Chem 2000; 275: 12963–12969.

    CAS  PubMed  Google Scholar 

  150. Akashi M, Osawa Y, Koeffler HP, Hachiya M . p21WAF1 expression by an activator of protein kinase C is regulated mainly at the post-transcriptional level in cells lacking p53: important role of RNA stabilization. Biochem J 1999; 337: 607–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Benjamin D, Schmidlin M, Min L, Gross B, Moroni C . BRF1 protein turnover and mRNA decay activity are regulated by Protein kinase B at the same phosphorylation sites. Mol Cell Biol 2006; 26: 9497–9507.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Dufourny B, van Teeffelen HA, Hamelers IH, Sussenbach JS, Steenbergh PH . Stabilization of cyclin D1 mRNA via the phosphatidylinositol 3-kinase pathway in MCF-7 human breast cancer cells. J Endocrinol 2000; 166: 329–338.

    CAS  PubMed  Google Scholar 

  153. Bromann PA, Korkaya H, Webb CP, Miller J, Calvin TL, Courtneidge SA . Platelet-derived growth factor stimulates Src-dependent mRNA stabilization of specific early genes in fibroblasts. J Biol Chem 2005; 280: 10253–10263.

    CAS  PubMed  Google Scholar 

  154. Dean JL, Sully G, Clark AR, Saklatvala J . The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 2004; 16: 1113–1121.

    CAS  PubMed  Google Scholar 

  155. Kotlyarov A, Gaestel M . Is MK2 (mitogen-activated protein kinase-activated protein kinase 2) the key for understanding post-transcriptional regulation of gene expression? Biochem Soc Trans 2002; 30: 959–963.

    CAS  PubMed  Google Scholar 

  156. Chen CY, Del Gatto-Konczak F, Wu Z, Karin M . Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science 1998; 280: 1945–1949.

    CAS  PubMed  Google Scholar 

  157. Chen CY, Gherzi R, Andersen JS, Gaietta G, Jurchott K, Royer HD et al. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 2000; 14: 1236–1248.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sun L, Stoecklin G, Van Way S, Hinkovska-Galcheva V, Guo RF, Anderson P et al. Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-{alpha} mRNA. J Biol Chem 2007; 282: 3766–3777.

    CAS  PubMed  Google Scholar 

  159. Johnson BA, Stehn JR, Yaffe MB, Blackwell TK . Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent and -independent mechanisms. J Biol Chem 2002; 277: 18029–18036.

    CAS  PubMed  Google Scholar 

  160. Chrestensen CA, Schroeder MJ, Shabanowitz J, Hunt DF, Pelo JW, Worthington MT et al. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J Biol Chem 2004; 279: 10176–10184.

    CAS  PubMed  Google Scholar 

  161. Brook M, Tchen CR, Santalucia T, McIlrath J, Arthur JS, Saklatvala J et al. Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol 2006; 26: 2408–2418.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Rigby WF, Roy K, Collins J, Rigby S, Connolly JE, Bloch DB et al. Structure/function analysis of tristetraprolin (TTP): p38 stress-activated protein kinase and lipopolysaccharide stimulation do not alter TTP function. J Immunol 2005; 174: 7883–7893.

    CAS  PubMed  Google Scholar 

  163. Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 2006; 26: 2399–2407.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK et al. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 2004; 23: 1313–1324.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Tran H, Maurer F, Nagamine Y . Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol 2003; 23: 7177–7188.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Fries B, Heukeshoven J, Hauber I, Gruttner C, Stocking C, Kehlenbach RH et al. Analysis of nucleocytoplasmic trafficking of the Hur ligand APRIL and its influence on CD83 expression. J Biol Chem 2006; 282: 4504–4515.

    PubMed  Google Scholar 

  167. Meijlink F, Curran T, Miller AD, Verma IM . Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. Proc Natl Acad Sci USA 1985; 82: 4987–4991.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Aghib DF, Bishop JM, Ottolenghi S, Guerrasio A, Serra A, Saglio G . A 3′ truncation of MYC caused by chromosomal translocation in a human T-cell leukemia increases mRNA stability. Oncogene 1990; 5: 707–711.

    CAS  PubMed  Google Scholar 

  169. Hollis GF, Gazdar AF, Bertness V, Kirsch IR . Complex translocation disrupts c-myc regulation in a human plasma cell myeloma. Mol Cell Biol 1988; 8: 124–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Yeilding NM, Rehman MT, Lee WM . Identification of sequences in c-myc mRNA that regulate its steady-state levels. Mol Cell Biol 1996; 16: 3511–3522.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Langa F, Lafon I, Vandormael-Pournin S, Vidaud M, Babinet C, Morello D . Healthy mice with an altered c-myc gene: role of the 3′ untranslated region revisited. Oncogene 2001; 20: 4344–4353.

    CAS  PubMed  Google Scholar 

  172. Levy V, Ugo V, Delmer A, Tang R, Ramond S, Perrot JY et al. Cyclin D1 overexpression allows identification of an aggressive subset of leukemic lymphoproliferative disorder. Leukemia 1999; 13: 1343–1351.

    CAS  PubMed  Google Scholar 

  173. Scuderi R, Palucka KA, Pokrovskaja K, Bjorkholm M, Wiman KG, Pisa P . Cyclin E overexpression in relapsed adult acute lymphoblastic leukemias of B-cell lineage. Blood 1996; 87: 3360–3367.

    CAS  PubMed  Google Scholar 

  174. Yasmeen A, Berdel WE, Serve H, Muller-Tidow C . E- and A-type cyclins as markers for cancer diagnosis and prognosis. Expert Rev Mol Diagn 2003; 3: 617–633.

    CAS  PubMed  Google Scholar 

  175. Soria JC, Jang SJ, Khuri FR, Hassan K, Liu D, Hong WK et al. Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res 2000; 60: 4000–4004.

    CAS  PubMed  Google Scholar 

  176. Rimokh R, Berger F, Bastard C, Klein B, French M, Archimbaud E et al. Rearrangement of CCND1 (BCL1/PRAD1) 3′ untranslated region in mantle-cell lymphomas and t(11q13)-associated leukemias. Blood 1994; 83: 3689–3696.

    CAS  PubMed  Google Scholar 

  177. Hosokawa Y, Suzuki R, Joh T, Maeda Y, Nakamura S, Kodera Y et al. A small deletion in the 3′-untranslated region of the cyclin D1/PRAD1/bcl-1 oncogene in a patient with chronic lymphocytic leukemia. Int J Cancer 1998; 76: 791–796.

    CAS  PubMed  Google Scholar 

  178. Denkert C, Kobel M, Pest S, Koch I, Berger S, Schwabe M et al. Expression of cyclooxygenase 2 is an independent prognostic factor in human ovarian carcinoma. Am J Pathol 2002; 160: 893–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Lim HY, Joo HJ, Choi JH, Yi JW, Yang MS, Cho DY et al. Increased expression of cyclooxygenase-2 protein in human gastric carcinoma. Clin Cancer Res 2000; 6: 519–525.

    CAS  PubMed  Google Scholar 

  180. Sheehan KM, Sheahan K, O'Donoghue DP, MacSweeney F, Conroy RM, Fitzgerald DJ et al. The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA 1999; 282: 1254–1257.

    CAS  PubMed  Google Scholar 

  181. Mrena J, Wiksten JP, Thiel A, Kokkola A, Pohjola L, Lundin J et al. Cyclooxygenase-2 is an independent prognostic factor in gastric cancer and its expression is regulated by the messenger RNA stability factor HuR. Clin Cancer Res 2005; 11: 7362–7368.

    CAS  PubMed  Google Scholar 

  182. Lapucci A, Donnini M, Papucci L, Witort E, Tempestini A, Bevilacqua A et al. AUF1 Is a bcl-2 A + U-rich element-binding protein involved in bcl-2 mRNA destabilization during apoptosis. J Biol Chem 2002; 277: 16139–16146.

    CAS  PubMed  Google Scholar 

  183. McDoniels-Silvers AL, Nimri CF, Stoner GD, Lubet RA, You M . Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin Cancer Res 2002; 8: 1127–1138.

    CAS  PubMed  Google Scholar 

  184. Shchors K, Yehiely F, Kular RK, Kotlo KU, Brewer G, Deiss LP . Cell death inhibiting RNA (CDIR) derived from a 3′-untranslated region binds AUF1 and heat shock protein 27. J Biol Chem 2002; 277: 47061–47072.

    CAS  PubMed  Google Scholar 

  185. Fraser MM, Watson PM, Fraig MM, Kelley JR, Nelson PS, Boylan AM et al. CaSm-mediated cellular transformation is associated with altered gene expression and messenger RNA stability. Cancer Res 2005; 65: 6228–6236.

    CAS  PubMed  Google Scholar 

  186. Blaxall BC, Dwyer-Nield LD, Bauer AK, Bohlmeyer TJ, Malkinson AM, Port JD . Differential expression and localization of the mRNA binding proteins, AU-rich element mRNA binding protein (AUF1) and Hu antigen R (HuR), in neoplastic lung tissue. Mol Carcinog 2000; 28: 76–83.

    CAS  PubMed  Google Scholar 

  187. Heinonen M, Bono P, Narko K, Chang SH, Lundin J, Joensuu H et al. Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res 2005; 65: 2157–2161.

    CAS  PubMed  Google Scholar 

  188. Erkinheimo TL, Sivula A, Lassus H, Heinonen M, Furneaux H, Haglund C et al. Cytoplasmic HuR expression correlates with epithelial cancer cell but not with stromal cell cyclooxygenase-2 expression in mucinous ovarian carcinoma. Gynecol Oncol 2005; 99: 14–19.

    CAS  PubMed  Google Scholar 

  189. Denkert C, Weichert W, Pest S, Koch I, Licht D, Kobel M et al. Overexpression of the embryonic-lethal abnormal vision-like protein HuR in ovarian carcinoma is a prognostic factor and is associated with increased cyclooxygenase 2 expression. Cancer Res 2004; 64: 189–195.

    CAS  PubMed  Google Scholar 

  190. Nabors LB, Furneaux HM, King PH . HuR, a novel target of anti-Hu antibodies, is expressed in non-neural tissues. J Neuroimmunol 1998; 92: 152–159.

    CAS  PubMed  Google Scholar 

  191. de Silanes IL, Lal A, Gorospe M . HuR: post-transcriptional paths to malignancy. RNA Biol 2005; 2: 11–13.

    Google Scholar 

  192. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777–1784.

    CAS  PubMed  Google Scholar 

  193. Munoz L, Nomdedeu JF, Lopez O, Carnicer MJ, Bellido M, Aventin A et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 2001; 86: 1261–1269.

    CAS  PubMed  Google Scholar 

  194. Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 2002; 100: 2980–2988.

    CAS  PubMed  Google Scholar 

  195. Nowak R, Oelschlagel U, Gurth H, Range U, Albrecht S, Krebs U et al. Relations between IL-3-induced proliferation and in vitro cytokine secretion of bone marrow cells from AML patients. Cytokine 1999; 11: 435–442.

    CAS  PubMed  Google Scholar 

  196. Guan Y, Gerhard B, Hogge DE . Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 2003; 101: 3142–3149.

    CAS  PubMed  Google Scholar 

  197. Vellenga E, Ostapovicz D, O'Rourke B, Griffin JD . Effects of recombinant IL-3, GM-CSF, and G-CSF on proliferation of leukemic clonogenic cells in short-term and long-term cultures. Leukemia 1987; 1: 584–589.

    CAS  PubMed  Google Scholar 

  198. Mayo MW, Wang XY, Algate PA, Arana GF, Hoyle PE, Steelman LS et al. Synergy between AUUUA motif disruption and enhancer insertion results in autocrine transformation of interleukin-3-dependent hematopoietic cells. Blood 1995; 86: 3139–3150.

    CAS  PubMed  Google Scholar 

  199. Stoecklin G, Gross B, Ming XF, Moroni C . A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene 2003; 22: 3554–3561.

    CAS  PubMed  Google Scholar 

  200. Matsui H, Asou H, Inaba T . Cytokines direct the regulation of bim mRNA stability by heat–shock cognate protein 70. Mol Cell 2007; 25: 99–112.

    CAS  PubMed  Google Scholar 

  201. Steube KG, Jadau A, Teepe D, Drexler HG . Expression of bcl-2 mRNA and protein in leukemia-lymphoma cell lines. Leukemia 1995; 9: 1841–1846.

    CAS  PubMed  Google Scholar 

  202. Danilov AV, Danilova OV, Klein AK, Huber BT . Molecular pathogenesis of chronic lymphocytic leukemia. Curr Mol Med 2006; 6: 665–675.

    CAS  PubMed  Google Scholar 

  203. Campas C, Cosialls AM, Barragan M, Iglesias-Serret D, Santidrian AF, Coll-Mulet L et al. Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp Hematol 2006; 34: 1663–1669.

    CAS  PubMed  Google Scholar 

  204. Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M et al. Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl-2 mRNA. Blood 2006. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17179226.

  205. Otake Y, Sengupta TK, Bandyopadhyay S, Spicer EK, Fernandes DJ . Retinoid-induced apoptosis in HL-60 cells is associated with nucleolin down-regulation and destabilization of Bcl-2 mRNA. Mol Pharmacol 2005; 67: 319–326.

    CAS  PubMed  Google Scholar 

  206. Zheng X, Zhang Y, Chen YQ, Castranova V, Shi X, Chen F . Inhibition of NF-kappaB stabilizes gadd45alpha mRNA. Biochem Biophys Res Commun 2005; 329: 95–99.

    CAS  PubMed  Google Scholar 

  207. Zaidi SH, Malter JS . Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3′-untranslated region of amyloid protein precursor mRNA. J Biol Chem 1995; 270: 17292–17298.

    CAS  PubMed  Google Scholar 

  208. Fawal M, Armstrong F, Ollier S, Dupont H, Touriol C, Monsarrat B et al. A ‘liaison dangereuse’ between AUF1/hnRNPD and the oncogenic tyrosine kinase NPM-ALK. Blood 2006; 108: 2780–2788.

    CAS  PubMed  Google Scholar 

  209. Audic Y, Hartley RS . Post-transcriptional regulation in cancer. Biol Cell 2004; 96: 479–498.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Drs Daniel Johnson and Roberto Gherzi for helpful comments on this paper. This work was supported by a grant from the Hillman Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Steinman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinman, R. mRNA stability control: a clandestine force in normal and malignant hematopoiesis. Leukemia 21, 1158–1171 (2007). https://doi.org/10.1038/sj.leu.2404656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404656

Keywords

This article is cited by

Search

Quick links