Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular pathways in follicular lymphoma

Abstract

Follicular lymphoma (FL) is one of the most common B-cell non-Hodgkin's lymphomas. The initiating genetic event found in 90% of FL is the t(14;18), causing constitutive expression of the antiapoptotic BCL-2 protein. The exact secondary alterations leading to full FL development are still poorly defined. In this review, we address (i) the genetic pathways associated with tumorigenesis and progression of FL, (ii) the role of micro-environmental factors with emphasis on B-cell receptor ligands and (iii) lymphoma models in mice and what they teach us about lymphomagenesis in man.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jaffe E, Harris NL, Stein H, Vardiman JW . Pathology and Genetics of Tumours of Haematopoietics and Lymphoid Tissues. IARC Press: Lyon, 2001.

    Google Scholar 

  2. Harris NL, Ferry JA . Follicular lymphoma. In: Knowles DM (eds). Neoplastic Hematopathology. Lippincott Williams and Wilkins: Baltimore, 2001, pp 823–853.

    Google Scholar 

  3. Cerroni L, Volkenandt M, Rieger E, Soyer HP, Kerl H . Bcl-2 protein expression and correlation with the interchromosomal 14;18 translocation in cutaneous lymphomas and pseudolymphomas. J Invest Dermatol 1994; 102: 231–235.

    Article  CAS  PubMed  Google Scholar 

  4. Bende RJ, Smit LA, Bossenbroek JG, Aarts WM, Spaargaren M, de Leval L et al. Primary follicular lymphoma of the small intestine: alpha4beta7 expression and immunoglobulin configuration suggest an origin from local antigen-experienced B cells. Am J Pathol 2003; 162: 105–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Freeman HJ, Anderson ME, Gascoyne RD . Clinical, pathological and molecular genetic findings in small intestinal follicle centre cell lymphoma. Can J Gastroenterol 1997; 11: 31–34.

    Article  CAS  PubMed  Google Scholar 

  6. Damaj G, Verkarre V, Delmer A, Solal-Celigny P, Yakoub-Agha I, Cellier C et al. Primary follicular lymphoma of the gastrointestinal tract: a study of 25 cases and a literature review. Ann Oncol 2003; 14: 623–629.

    Article  CAS  PubMed  Google Scholar 

  7. Tsujimoto Y, Cossman J, Jaffe E, Croce CM . Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228: 1440–1443.

    Article  CAS  PubMed  Google Scholar 

  8. Cleary ML, Sklar J . Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 1985; 82: 7439–7443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McDonnell TJ, Korsmeyer SJ . Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 1991; 349: 254–256.

    Article  CAS  PubMed  Google Scholar 

  10. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP et al. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79–88.

    Article  CAS  PubMed  Google Scholar 

  11. Strasser A, Harris AW, Cory S . E mu-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 1993; 8: 1–9.

    CAS  PubMed  Google Scholar 

  12. Liu Y, Hernandez AM, Shibata D, Cortopassi GA . BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA 1994; 91: 8910–8914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJB et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood 1995; 85: 2528–2536.

    CAS  PubMed  Google Scholar 

  14. Dölken G, Illerhaus G, Hirt C, Mertelsmann R . Bcl-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant diseases. J Clin Oncol 1996; 14: 1333–1344.

    Article  PubMed  Google Scholar 

  15. Jardin F, Gaulard P, Buchonnet G, Contentin N, Lepretre S, Lenain P et al. Follicular lymphoma without t(14;18) and with BCL-6 rearrangement: a lymphoma subtype with distinct pathological, molecular and clinical characteristics. Leukemia 2002; 16: 2309–2317.

    Article  CAS  PubMed  Google Scholar 

  16. Ott G, Katzenberger T, Lohr A, Kindelberger S, Rudiger T, Wilhelm M et al. Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood 2002; 99: 3806–3812.

    Article  CAS  PubMed  Google Scholar 

  17. Bosga-Bouwer AG, van Imhoff GW, Boonstra R, van der Veen A, Haralambieva E, van den Berg A et al. Follicular lymphoma grade 3B includes 3 cytogenetically defined subgroups with primary t(14;18), 3q27, or other translocations: t(14;18) and 3q27 are mutually exclusive. Blood 2003; 101: 1149–1154.

    Article  CAS  PubMed  Google Scholar 

  18. Katzenberger T, Ott G, Klein T, Kalla J, Muller-Hermelink HK, Ott MM . Cytogenetic alterations affecting BCL6 are predominantly found in follicular lymphomas grade 3B with a diffuse large B-cell component. Am J Pathol 2004; 165: 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo Y, Karube K, Kawano R, Yamaguchi T, Suzumiya J, Huang GS et al. Low-grade follicular lymphoma with t(14;18) presents a homogeneous disease entity otherwise the rest comprises minor groups of heterogeneous disease entities with Bcl2 amplification, Bcl6 translocation or other gene aberrances. Leukemia 2005; 19: 1058–1063.

    Article  CAS  PubMed  Google Scholar 

  20. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG . The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 2000; 18: 495–527.

    Article  CAS  PubMed  Google Scholar 

  21. Gellert M . V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 2002; 71: 101–132.

    Article  CAS  PubMed  Google Scholar 

  22. Brandt VL, Roth DB . A recombinase diversified: new functions of the RAG proteins. Curr Opin Immunol 2002; 14: 224–229.

    Article  CAS  PubMed  Google Scholar 

  23. Williams ME, Meeker TC, Swerdlow SH . Rearrangement of the chromosome 11 bcl-1 locus in centrocytic lymphoma: analysis with multiple breakpoint probes. Blood 1991; 78: 493–498.

    CAS  PubMed  Google Scholar 

  24. Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR . A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 2004; 428: 88–93.

    Article  CAS  PubMed  Google Scholar 

  25. MacLennan ICM . Germinal centers. Annu Rev Immunol 1994; 12: 117–139.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y-J, Grouard G, de Bouteiller O, Banchereau J . Follicular dendritic cells and germinal centers. Int Rev Cytol 1996; 166: 139–179.

    Article  CAS  PubMed  Google Scholar 

  27. Rajewsky K . Clonal selection and learning in the antibody system. Nature 1996; 381: 751–758.

    Article  CAS  PubMed  Google Scholar 

  28. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T . Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102: 553–563.

    Article  CAS  PubMed  Google Scholar 

  29. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O et al. Actication-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 2000; 102: 565–575.

    Article  CAS  PubMed  Google Scholar 

  30. Sale JE, Neuberger MS . TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 1998; 9: 859–869.

    Article  CAS  PubMed  Google Scholar 

  31. Goossens T, Klein U, Küppers R . Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci USA 1998; 95: 2463–2468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bross L, Fukita Y, McBlane F, Démollière C, Rajewsky K, Jacobs H . DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 2000; 13: 589–597.

    Article  CAS  PubMed  Google Scholar 

  33. Papavasiliou FN, Schatz DG . Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature 2000; 408: 216–221.

    Article  CAS  PubMed  Google Scholar 

  34. Lo Coco F, Ye BH, Lista F, Corradini P, Offit K, Knowles DM et al. Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin's lymphoma. Blood 1994; 83: 1757–1759.

    CAS  PubMed  Google Scholar 

  35. Bastard C, Deweindt C, Kerckaert JP, Lenormand B, Rossi A, Pezzella F et al. LAZ3 rearrangements in non-Hodgkin's lymphoma: correlation with histology, immunophenotype, karyotype, and clinical outcome in 217 patients. Blood 1994; 83: 2423–2427.

    CAS  PubMed  Google Scholar 

  36. Kuppers R, Dalla-Favera R . Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 2001; 20: 5580–5594.

    Article  CAS  PubMed  Google Scholar 

  37. Bergsagel PL, Kuehl WM . Chromosome translocations in multiple myeloma. Oncogene 2001; 20: 5611–5622.

    Article  CAS  PubMed  Google Scholar 

  38. Ruminy P, Jardin F, Picquenot JM, Gaulard P, Parmentier F, Buchonnet G et al. Two patterns of chromosomal breakpoint locations on the immunoglobulin heavy-chain locus in B-cell lymphomas with t(3;14)(q27;q32): relevance to histology. Oncogene 2006; 25: 4947–4954.

    Article  CAS  PubMed  Google Scholar 

  39. Preudhomme C, Roumier C, Hildebrand MP, Dallery-Prudhomme E, Lantoine D, Lai JL et al. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 2000; 19: 2023–2032.

    Article  CAS  PubMed  Google Scholar 

  40. Akasaka H, Akasaka T, Kurata M, Ueda C, Shimizu A, Uchiyama T et al. Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays. Cancer Res 2000; 60: 2335–2341.

    CAS  PubMed  Google Scholar 

  41. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412: 341–346.

    Article  CAS  PubMed  Google Scholar 

  42. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA 1998; 95: 11816–11821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen HM, Peters A, Baron B, Zhu X, Storb U . Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 1998; 280: 1750–1752.

    Article  CAS  PubMed  Google Scholar 

  44. Weiss LM, Warnke RA, Sklar J, Cleary ML . Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 1987; 317: 1185–1189.

    Article  CAS  PubMed  Google Scholar 

  45. Streubel B, Simonitsch-Klupp I, Mullauer L, Lamprecht A, Huber D, Siebert R et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia 2004; 18: 1722–1726.

    Article  CAS  PubMed  Google Scholar 

  46. Ye H, Liu H, Attygalle A, Wotherspoon AC, Nicholson AG, Charlotte F et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood 2003; 102: 1012–1018.

    Article  CAS  PubMed  Google Scholar 

  47. Okabe M, Inagaki H, Ohshima K, Yoshino T, Li C, Eimoto T et al. API2-MALT1 fusion defines a distinctive clinicopathologic subtype in pulmonary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Am J Pathol 2003; 162: 1113–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A . T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 2005; 19: 652–658.

    Article  CAS  PubMed  Google Scholar 

  49. Wlodarska I, Veyt E, de Paepe P, Vandenberghe P, Nooijen P, Theate I et al. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 2005; 19: 1299–1305.

    Article  CAS  PubMed  Google Scholar 

  50. Fenton JA, Schuuring E, Barrans SL, Banham AH, Rollinson SJ, Morgan GJ et al. t(3;14)(p14;q32) results in aberrant expression of FOXP1 in a case of diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2006; 45: 164–168.

    Article  CAS  PubMed  Google Scholar 

  51. Haralambieva E, Adam P, Ventura R, Katzenberger T, Kalla J, Holler S et al. Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation. Leukemia 2006; 20: 1300–1303.

    Article  CAS  PubMed  Google Scholar 

  52. Sagaert X, de Paepe P, Libbrecht L, Vanhentenrijk V, Verhoef G, Thomas J et al. Forkhead box protein P1 expression in mucosa-associated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma. J Clin Oncol 2006; 24: 2490–2497.

    Article  CAS  PubMed  Google Scholar 

  53. Iqbal J, Sanger WG, Horsman DE, Rosenwald A, Pickering DL, Dave B et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol 2004; 165: 159–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ladanyi M, Offit K, Jhanwar SC, Filippa DA, Chaganti RS . MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. Blood 1991; 77: 1057–1063.

    CAS  PubMed  Google Scholar 

  55. Dalla-Favera R, Martinotti S, Gallo RC, Erikson J, Croce CM . Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 1983; 219: 963–967.

    Article  CAS  PubMed  Google Scholar 

  56. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 1982; 79: 7837–7841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Migliazza A, Martinotti S, Chen W, Fusco C, Ye BH, Knowles DM et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc Natl Acad Sci USA 1995; 92: 12520–12524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levy S, Mendel E, Kon S, Avnur Z, Levy R . Mutational hot spots in Ig V region genes of human follicular lymphomas. J Exp Med 1988; 168: 475–489.

    Article  CAS  PubMed  Google Scholar 

  59. Bahler DW, Campbell MJ, Hart S, Miller RA, Levy S, Levy R . Ig VH gene expression among human follicular lymphomas. Blood 1991; 78: 1561–1568.

    CAS  PubMed  Google Scholar 

  60. Aarts WM, Bende RJ, Steenbergen EJ, Kluin PM, Ooms ECM, Pals ST et al. Variable heavy chain gene analysis of follicular lymphomas: correlation between heavy chain isotype expression and somatic mutation load. Blood 2000; 95: 2922–2929.

    CAS  PubMed  Google Scholar 

  61. Pascual V, Liu Y-J, Magalski A, de Bouteiller O, Banchereau J, Capra JD . Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 1994; 180: 329–339.

    Article  CAS  PubMed  Google Scholar 

  62. Zelenetz AD, Chen TT, Levy R . Histologic transformation of follicular lymphoma to diffuse lymphoma represents tumor progression by a single malignant B cell. J Exp Med 1991; 173: 197–207.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu D, Hawkins RE, Hamblin TJ, Stevenson FK . Clonal history of a human follicular lymphoma as revealed in the immunoglobulin variable region genes. Br J Haematol 1994; 86: 505–512.

    Article  CAS  PubMed  Google Scholar 

  64. Matolcsy A, Schattner EJ, Knowles DM, Casali P . Clonal evolution of B cells in transformation from low- to high-grade lymphoma. Eur J Immunol 1999; 29: 1253–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Smit LA, Bende RJ, Aten J, Guikema JE, Aarts WM, van Noesel CJ . Expression of activation-induced cytidine deaminase is confined to B-cell non-Hodgkin's lymphomas of germinal-center phenotype. Cancer Res 2003; 63: 3894–3898.

    CAS  PubMed  Google Scholar 

  66. Aarts WM, Bende RJ, Bossenbroek JG, Pals ST, van Noesel CJM . Variable heavy chain gene analysis of follicular lymphomas: subclone selection rather than clonal evolution over time. Blood 2001; 98: 238–240.

    Article  CAS  PubMed  Google Scholar 

  67. Aarts WM, Bende RJ, Vaandrager JW, Kluin PM, Langerak AW, Pals ST et al. In situ analysis of the variable heavy chain gene of an IgM/IgG-expressing follicular lymphoma: evidence for interfollicular trafficking of tumor cells. Am J Pathol 2002; 160: 883–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pasqualucci L, Guglielmino R, Houldsworth J, Mohr J, Aoufouchi S, Polakiewicz R et al. Expression of the AID protein in normal and neoplastic B cells. Blood 2004; 104: 3318–3325.

    Article  CAS  PubMed  Google Scholar 

  69. Lossos IS, Levy R, Alizadeh AA . AID is expressed in germinal center B-cell-like and activated B-cell-like diffuse large-cell lymphomas and is not correlated with intraclonal heterogeneity. Leukemia 2004; 18: 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  70. Goodnow CC . Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA 1996; 93: 2264–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nemazee D, Weigert M . Revising B cell receptors. J Exp Med 2000; 191: 1813–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monroe JG . ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 2006; 6: 283–294.

    Article  CAS  PubMed  Google Scholar 

  73. Lam K-P, Kühn R, Rajewsky K . In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997; 90: 1073–1083.

    Article  CAS  PubMed  Google Scholar 

  74. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K . Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 2004; 117: 787–800.

    Article  CAS  PubMed  Google Scholar 

  75. Gururajan M, Jennings CD, Bondada S . Cutting edge: constitutive B cell receptor signaling is critical for basal growth of B lymphoma. J Immunol 2006; 176: 5715–5719.

    Article  CAS  PubMed  Google Scholar 

  76. Chang B, Casali P . The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today 1994; 15: 367–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lossos IS, Tibshirani R, Narasimhan B, Levy R . The inference of antigen selection on Ig genes. J Immunol 2000; 165: 5122–5126.

    Article  CAS  PubMed  Google Scholar 

  78. Lossos IS, Okada CY, Tibshirani R, Warnke R, Vose JM, Greiner TC et al. Molecular analysis of immunoglobulin genes in diffuse large B-cell lymphomas. Blood 2000; 95: 1797–1803.

    CAS  PubMed  Google Scholar 

  79. Bende RJ, Aarts WM, de Jong D, Pals ST, van Noesel CJ . Among B-cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J Exp Med 2005; 201: 1229–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dighiero G, Hart S, Lim A, Borche L, Levy R, Miller RA . Autoantibody activity of immunoglobulins isolated from B-cell follicular lymphomas. Blood 1991; 78: 581–585.

    CAS  PubMed  Google Scholar 

  81. Stamatopoulos K, Kosmas C, Papadaki T, Pouliou E, Belessi C, Afendaki S et al. Follicular lymphoma immunoglobulin k light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains. Br J Haematol 1997; 96: 132–146.

    Article  CAS  PubMed  Google Scholar 

  82. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC . Predominant autoantibody production by early human B cell precursors. Science 2003; 301: 1374–1377.

    Article  CAS  PubMed  Google Scholar 

  83. Yoshino T, Miyake K, Ichimura K, Mannami T, Ohara N, Hamazaki S et al. Increased incidence of follicular lymphoma in the duodenum. Am J Surg Pathol 2000; 24: 688–693.

    Article  CAS  PubMed  Google Scholar 

  84. Zhu D, McCarthy H, Ottensmeier CH, Johnson P, Hamblin TJ, Stevenson FK . Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 2002; 99: 2562–2568.

    Article  CAS  PubMed  Google Scholar 

  85. Irish JM, Czerwinski DK, Nolan GP, Levy R . Altered B cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor infiltrating non-malignant B cells. Blood 2006; doi:10.1182/blood-2006-02-003921.

  86. Dorfman DM, Schultze JL, Shahsafaei A, Michalak S, Gribben JG, Freeman GJ et al. In vivo expression of B7-1 and B7-2 by follicular lymphoma cells can prevent induction of T-cell anergy but is insufficient to induce significant T-cell proliferation. Blood 1997; 90: 4297–4306.

    CAS  PubMed  Google Scholar 

  87. Vyth-Dreese FA, Boot H, Dellemijn TAM, Majoor DM, Oomen LCJM, Laman JD et al. Localization in situ of costimulatory molecules and cytokines in B-cell non-Hodgkin's lymphoma. Immunology 1998; 94: 580–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koopman G, Parmentier HK, Schuurman HJ, Newman W, Meijer CJ, Pals ST . Adhesion of human B cells to follicular dendritic cells involves both the lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and very late antigen 4/vascular cell adhesion molecule 1 pathways. J Exp Med 1991; 173: 1297–1304.

    Article  CAS  PubMed  Google Scholar 

  89. Koopman G, Keehnen RM, Lindhout E, Newman W, Shimizu Y, van Seventer GA et al. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol 1994; 152: 3760–3767.

    CAS  PubMed  Google Scholar 

  90. Park CS, Yoon SO, Armitage RJ, Choi YS . Follicular dendritic cells produce IL-15 that enhances germinal center B cell proliferation in membrane-bound form. J Immunol 2004; 173: 6676–6683.

    Article  CAS  PubMed  Google Scholar 

  91. Li L, Zhang X, Kovacic S, Long AJ, Bourque K, Wood CR et al. Identification of a human follicular dendritic cell molecule that stimulates germinal center B cell growth. J Exp Med 2000; 191: 1077–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hase H, Kanno Y, Kojima M, Hasegawa K, Sakurai D, Kojima H et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood 2004; 103: 2257–2265.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang X, Park CS, Yoon SO, Li L, Hsu YM, Ambrose C et al. BAFF supports human B cell differentiation in the lymphoid follicles through distinct receptors. Int Immunol 2005; 17: 779–788.

    Article  CAS  PubMed  Google Scholar 

  94. van der Voort R, Taher TE, Keehnen RM, Smit L, Groenink M, Pals ST . Paracrine regulation of germinal center B cell adhesion through the c-met-hepatocyte growth factor/scatter factor pathway. J Exp Med 1997; 185: 2121–2131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tjin EP, Bende RJ, Derksen PW, van Huijstee AP, Kataoka H, Spaargaren M et al. Follicular dendritic cells catalyze hepatocyte growth factor (HGF) activation in the germinal center microenvironment by secreting the serine protease HGF activator. J Immunol 2005; 175: 2807–2813.

    Article  CAS  PubMed  Google Scholar 

  96. Endres R, Alimzhanov MB, Plitz T, Futterer A, Kosco-Vilbois MH, Nedospasov SA et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin B receptor by radioresistant stromal cells and of lymphotoxin B and tumor necrosis factor by B cells. J Exp Med 1999; 189: 159–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Matsumoto M, Fu Y-X, Molina H, Huang G, Kim J, Thomas DA et al. Distinct roles of lymphotoxin A and the type I tumor necrosis factor (TNF) receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells. J Exp Med 1997; 186: 1997–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Victoratos P, Lagnel J, Tzima S, Alimzhanov MB, Rajewsky K, Pasparakis M et al. FDC-specific functions of p55TNFR and IKK2 in the development of FDC networks and of antibody responses. Immunity 2006; 24: 65–77.

    Article  CAS  PubMed  Google Scholar 

  99. Mackay F, Browning JL . Turning off follicular dendritic cells. Nature 1998; 395: 26–27.

    Article  CAS  PubMed  Google Scholar 

  100. Gommerman JL, Mackay F, Donskoy E, Meier W, Martin P, Browning JL . Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. J Clin Invest 2002; 110: 1359–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Warzocha K, Ribeiro P, Renard N, Bienvenu J, Charlot C, Coiffier B et al. Expression of genes coding for the tumor necrosis factor and lymphotoxin ligand-receptor system in non-Hodgkin's lymphomas. Cancer Immunol Immunother 2000; 49: 469–475.

    Article  CAS  PubMed  Google Scholar 

  102. Chang KC, Huang X, Medeiros LJ, Jones D . Germinal centre-like versus undifferentiated stromal immunophenotypes in follicular lymphoma. J Pathol 2003; 201: 404–412.

    Article  PubMed  Google Scholar 

  103. Hoglund M, Sehn L, Connors JM, Gascoyne RD, Siebert R, Sall T et al. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer 2004; 39: 195–204.

    Article  PubMed  Google Scholar 

  104. Mohamed AN, Palutke M, Eisenberg L, Al Katib A . Chromosomal analyses of 52 cases of follicular lymphoma with t(14;18), including blastic/blastoid variant. Cancer Genet Cytogenet 2001; 126: 45–51.

    Article  CAS  PubMed  Google Scholar 

  105. Viardot A, Moller P, Hogel J, Werner K, Mechtersheimer G, Ho AD et al. Clinicopathologic correlations of genomic gains and losses in follicular lymphoma. J Clin Oncol 2002; 20: 4523–4530.

    Article  PubMed  Google Scholar 

  106. Tilly H, Rossi A, Stamatoullas A, Lenormand B, Bigorgne C, Kunlin A et al. Prognostic value of chromosomal abnormalities in follicular lymphoma. Blood 1994; 84: 1043–1049.

    CAS  PubMed  Google Scholar 

  107. Yunis JJ, Frizzera G, Oken MM, McKenna J, Theologides A, Arnesen M . Multiple recurrent genomic defects in follicular lymphoma. A possible model for cancer. N Engl J Med 1987; 316: 79–84.

    Article  CAS  PubMed  Google Scholar 

  108. Lestou VS, Ludkovski O, Connors JM, Gascoyne RD, Lam WL, Horsman DE . Characterization of the recurrent translocation t(1;1)(p36.3;q21.1-2) in non-Hodgkin lymphoma by multicolor banding and fluorescence in situ hybridization analysis. Genes Chromosomes Cancer 2003; 36: 375–381.

    Article  CAS  PubMed  Google Scholar 

  109. Dave BJ, Hess MM, Pickering DL, Zaleski DH, Pfeifer AL, Weisenburger DD et al. Rearrangements of chromosome band 1p36 in non-Hodgkin's lymphoma. Clin Cancer Res 1999; 5: 1401–1409.

    CAS  PubMed  Google Scholar 

  110. Gilles F, Goy A, Remache Y, Shue P, Zelenetz AD . MUC1 dysregulation as the consequence of a t(1;14)(q21;q32) translocation in an extranodal lymphoma. Blood 2000; 95: 2930–2936.

    CAS  PubMed  Google Scholar 

  111. Willis TG, Zalcberg IR, Coignet LJ, Wlodarska I, Stul M, Jadayel DM et al. Molecular cloning of translocation t(1;14)(q21;q32) defines a novel gene (BCL9) at chromosome 1q21. Blood 1998; 91: 1873–1881.

    CAS  PubMed  Google Scholar 

  112. Callanan MB, Le Baccon P, Mossuz P, Duley S, Bastard C, Hamoudi R et al. The IgG Fc receptor, FcyRIIB, is a target for deregulation by chromosomal translocation in malignant lymphoma. Proc Natl Acad Sci USA 2000; 97: 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen W, Palanisamy N, Schmidt H, Teruya-Feldstein J, Jhanwar SC, Zelenetz AD et al. Deregulation of FCGR2B expression by 1q21 rearrangements in follicular lymphomas. Oncogene 2001; 20: 7686–7693.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang Y, Matthiesen P, Harder S, Siebert R, Castoldi G, Calasanz MJ et al. A 3-cM commonly deleted region in 6q21 in leukemias and lymphomas delineated by fluorescence in situ hybridization. Genes Chromosomes Cancer 2000; 27: 52–58.

    Article  CAS  PubMed  Google Scholar 

  115. Henderson LJ, Okamoto I, Lestou VS, Ludkovski O, Robichaud M, Chhanabhai M et al. Delineation of a minimal region of deletion at 6q16.3 infollicularlymphoma and construction of a bacterial artificial chromosome contig spanning a 6-megabase region of 6q16-q21. Genes Chromosomes Cancer 2004; 40: 60–65.

    Article  CAS  PubMed  Google Scholar 

  116. Elenitoba-Johnson KSJ, Gascoyne RD, Lim MS, Chhanabai M, Jaffe ES, Raffeld M . Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood 1998; 91: 4677–4685.

    CAS  PubMed  Google Scholar 

  117. Villuendas R, Sanchez-Beato M, Martinez JC, Saez AI, Martinez-Delgado B, Garcia JF et al. Loss of p16/INK4A protein expression in non-Hodgkin's lymphomas is a frequent finding associated with tumor progression. Am J Pathol 1998; 153: 887–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pinyol M, Cobo F, Bea S, Jares P, Nayach I, Fernandez PL et al. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin's lymphomas. Blood 1998; 91: 2977–2984.

    CAS  PubMed  Google Scholar 

  119. Yano T, Jaffe ES, Longo DL, Raffeld M . MYC rearrangements in histologically progressed follicular lymphomas. Blood 1992; 80: 758–767.

    CAS  PubMed  Google Scholar 

  120. Lossos IS, Levy R . Higher-grade transformation of follicle center lymphoma is associated with somatic mutation of the 5′ noncoding regulatory region of the BCL-6 gene. Blood 2000; 96: 635–639.

    CAS  PubMed  Google Scholar 

  121. Matolcsy A, Casali P, Warnke RA, Knowles DM . Morphologic transformation of follicular lymphoma is associated with somatic mutation of the translocated Bcl-2 gene. Blood 1996; 88: 3937–3944.

    CAS  PubMed  Google Scholar 

  122. Lo Coco F, Gaidano G, Louie DC, Offit K, Chaganti RS, Dalla-Favera R . p53 mutations are associated with histologic transformation of follicular lymphoma. Blood 1993; 82: 2289–2295.

    CAS  PubMed  Google Scholar 

  123. Sander CA, Yano T, Clark HM, Harris C, Longo DL, Jaffe ES et al. p53 mutation is associated with progression in follicular lymphomas. Blood 1993; 82: 1994–2004.

    CAS  PubMed  Google Scholar 

  124. Davies AJ, Lee AM, Taylor C, Clear AJ, Goff LK, Iqbal S et al. A limited role for TP53 mutation in the transformation of follicular lymphoma to diffuse large B-cell lymphoma. Leukemia 2005; 19: 1459–1465.

    Article  CAS  PubMed  Google Scholar 

  125. Phan RT, Dalla-Favera R . The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 2004; 432: 635–639.

    Article  CAS  PubMed  Google Scholar 

  126. Husson H, Carideo EG, Neuberg D, Schultze J, Munoz O, Marks PW et al. Gene expression profiling of follicular lymphoma and normal germinal center B cells using cDNA arrays. Blood 2002; 99: 282–289.

    Article  CAS  PubMed  Google Scholar 

  127. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  128. Glas AM, Kersten MJ, Delahaye LJ, Witteveen AT, Kibbelaar RE, Velds A et al. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood 2005; 105: 301–307.

    Article  CAS  PubMed  Google Scholar 

  129. Lossos IS, Alizadeh AA, Diehn M, Warnke R, Thorstenson Y, Oefner PJ et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc Natl Acad Sci USA 2002; 99: 8886–8891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. de Vos S, Hofmann WK, Grogan TM, Krug U, Schrage M, Miller TP et al. Gene expression profile of serial samples of transformed B-cell lymphomas. Lab Invest 2003; 83: 271–285.

    Article  CAS  PubMed  Google Scholar 

  131. Elenitoba-Johnson KS, Jenson SD, Abbott RT, Palais RA, Bohling SD, Lin Z et al. Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy. Proc Natl Acad Sci USA 2003; 100: 7259–7264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G et al. High numbers of tumor infiltrating FOXP3-positive regulatory T-cells are associated with improved overall survival in follicular lymphoma. Blood 2006; doi:10.1182/blood-2006-04-018218.

  133. Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 2005; 106: 2169–2174.

    Article  CAS  PubMed  Google Scholar 

  134. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM . Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 2006; 107: 3639–3646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Egle A, Harris AW, Bath ML, O’Reilly L, Cory S . VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 2004; 103: 2276–2283.

    Article  CAS  PubMed  Google Scholar 

  136. Strasser A, Harris AW, Bath ML, Cory S . Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990; 348: 331–333.

    Article  CAS  PubMed  Google Scholar 

  137. Eischen CM, Weber JD, Roussel M, Sherr CJ, Cleveland JL . Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 1999; 13: 2658–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW . INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 1999; 13: 2670–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13: 2678–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Eischen CM, Roussel MF, Korsmeyer SJ, Cleveland JL . Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol Cell Biol 2001; 21: 7653–7662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Egle A, Harris AW, Bouillet P, Cory S . Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 2004; 101: 6164–6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A . Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 1991; 65: 737–752.

    Article  CAS  PubMed  Google Scholar 

  143. Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A . Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol Cell Biol 1991; 11: 1176–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T . Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 1999; 11: 709–719.

    Article  CAS  PubMed  Google Scholar 

  145. Allen JD, Verhoeven E, Domen J, van der Valk M, Berns A . Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc. Oncogene 1997; 15: 1133–1141.

    Article  CAS  PubMed  Google Scholar 

  146. Ferguson DO, Alt FW . DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 2001; 20: 5572–5579.

    Article  CAS  PubMed  Google Scholar 

  147. Palomo C, Zou X, Nicholson IC, Butzler C, Bruggemann M . B-cell tumorigenesis in mice carrying a yeast artificial chromosome-based immunoglobulin heavy/c-myc translocus is independent of the heavy chain intron enhancer (Emu). Cancer Res 1999; 59: 5625–5628.

    CAS  PubMed  Google Scholar 

  148. Kovalchuk AL, Qi CF, Torrey TA, Taddesse-Heath L, Feigenbaum L, Park SS et al. Burkitt lymphoma in the mouse. J Exp Med 2000; 192: 1183–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Park SS, Kim JS, Tessarollo L, Owens JD, Peng L, Han SS et al. Insertion of c-Myc into Igh induces B-cell and plasma-cell neoplasms in mice. Cancer Res 2005; 65: 1306–1315.

    Article  CAS  PubMed  Google Scholar 

  150. Zhu D, Qi CF, Morse III HC, Janz S, Stevenson FK . Deregulated expression of the Myc cellular oncogene drives development of mouse ‘Burkitt-like’ lymphomas from naive B cells. Blood 2005; 105: 2135–2137.

    Article  CAS  PubMed  Google Scholar 

  151. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1991; 88: 5413–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Capoulade C, Bressac-de Paillerets B, Lefrere I, Ronsin M, Feunteun J, Tursz T et al. Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt's lymphoma cells. Oncogene 1998; 16: 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  153. Lindstrom MS, Klangby U, Wiman KG . p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene 2001; 20: 2171–2177.

    Article  CAS  PubMed  Google Scholar 

  154. Cattoretti G, Pasqualucci L, Ballon G, Tam W, Nandula SV, Shen Q et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 2005; 7: 445–455.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Mijntje Aarts as past co-worker for some of the data and stimulating discussions, Febe van Maldegem for thoroughly reading this paper, David J de Gorter for helpful discussions, Drs Herbert C Morse and Michael Teitell for personal communications and Elina S te Boekhorst for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J M van Noesel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bende, R., Smit, L. & van Noesel, C. Molecular pathways in follicular lymphoma. Leukemia 21, 18–29 (2007). https://doi.org/10.1038/sj.leu.2404426

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404426

Keywords

This article is cited by

Search

Quick links