Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C

Abstract

17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a new anticancer agent currently in clinical trials. The ability of 17-AAG to abrogate the function of heat-shock protein Hsp90 and modulate cellular sensitivity to anticancer agents has prompted recent research to use this compound in drug combination therapy. Here we report that 17-AAG has striking opposite effects on the activity of arsenic trioxide (ATO) and ara-C. Combination of 17-AAG with ATO exhibited a synergistic effect in leukemia cells, whereas coincubation of 17-AAG and ara-C showed antagonistic activity. Mechanistic studies revealed that ATO exerted cytotoxic action by reactive oxygen species generation, and activated Akt survival pathway. 17-AAG abrogated Akt activation and enhanced the activity of ATO. In contrast, treatment of leukemia cells with 17-AAG caused a G1 arrest, a decrease in DNA synthesis and reduced ara-C incorporation into DNA, leading to antagonism. The ability of 17-AAG to enhance the antileukemia activity of ATO was further demonstrated in primary leukemia cells isolated from patients with acute myeloid leukemia and chronic lymphocytic leukemia, including cells from refractory patients. Our data suggest that combination of 17-AAG and ATO may be an effective therapeutic regimen. Caution should be exercised in using 17-AAG together with ara-C, as their combination effects are schedule dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Young JC, Moarefi I, Hartl FU . Hsp90: a specialized but essential protein-folding tool. J Cell Biol 2001; 154: 267–273.

    Article  CAS  Google Scholar 

  2. Neckers L . Heat shock protein 90 inhibition by 17-allylamino-17-demethoxygeldanamycin: a novel therapeutic approach for treating hormone refractory prostate cancer. Clin Cancer Res 2002; 8: 962–966.

    CAS  PubMed  Google Scholar 

  3. Neckers L . Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002; 8: S55–S61.

    Article  CAS  Google Scholar 

  4. Dunn FB . Heat shock protein inhibitor shows antitumor activity. J Natl Cancer Inst 2002; 94: 1194–1195.

    Article  CAS  Google Scholar 

  5. Schulte TW, Neckers LM . The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 1998; 42: 273–279.

    Article  CAS  Google Scholar 

  6. Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA . Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 2001; 61: 4003–4009.

    CAS  PubMed  Google Scholar 

  7. Schulte TW, Blagosklonny MV, Ingui C, Neckers L . Disruption of the Raf-1–hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1–Ras association. J Biol Chem 1995; 270: 24585–24588.

    Article  CAS  Google Scholar 

  8. Whitesell L, Shifrin SD, Schwab G, Neckers LM . Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 1992; 52: 1721–1728.

    CAS  PubMed  Google Scholar 

  9. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM . Inhibition of heat shock protein HSP90–pp60v–src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994; 91: 8324–8328.

    Article  CAS  Google Scholar 

  10. Blagosklonny MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462.

    Article  CAS  Google Scholar 

  11. Datta SR, Brunet A, Greenberg ME . Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    Article  CAS  Google Scholar 

  12. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  Google Scholar 

  13. Munster PN, Marchion DC, Basso AD, Rosen N . Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3′-kinase-AKT-dependent pathway. Cancer Res 2002; 62: 3132–3137.

    CAS  PubMed  Google Scholar 

  14. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425: 407–410.

    Article  CAS  Google Scholar 

  15. Workman P . Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics. Mol Cancer Ther 2003; 2: 131–138.

    Article  CAS  Google Scholar 

  16. Neckers L, Neckers K . Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics – an update. Expert Opin Emerg Drugs 2005; 10: 137–149.

    Article  CAS  Google Scholar 

  17. Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJ, Dai NT et al. Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood 2005; 106: 318–327.

    Article  CAS  Google Scholar 

  18. Hawkins LM, Jayanthan AA, Narendran A . Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on pediatric acute lymphoblastic leukemia (ALL) with respect to Bcr-Abl status and imatinib mesylate sensitivity. Pediatr Res 2005; 57: 430–437.

    Article  CAS  Google Scholar 

  19. Grem JL, Morrison G, Guo XD, Agnew E, Takimoto CH, Thomas R et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 2005; 23: 1885–1893.

    Article  CAS  Google Scholar 

  20. Goetz MP, Toft D, Reid J, Ames M, Stensgard B, Safgren S et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 2005; 23: 1078–1087.

    Article  CAS  Google Scholar 

  21. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL . BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002; 100: 3041–3044.

    Article  CAS  Google Scholar 

  22. Nimmanapalli R, O’Bryan E, Kuhn D, Yamaguchi H, Wang H-G, Bhalla K . Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-xL, and Bax downstream of 17-AAG-mediated down-regulation of Akt, Raf-1, and Src kinases. Blood 2003; 102: 269–275.

    Article  CAS  Google Scholar 

  23. Radujkovic A, Schad M, Topaly J, Veldwijk MR, Laufs S, Schultheis BS et al. Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL – inhibition of P-glycoprotein function by 17-AAG. Leukemia 2005; 19: 1198–1206.

    Article  CAS  Google Scholar 

  24. Russell JS, Burgan W, Oswald KA, Camphausen K, Tofilon PJ . Enhanced cell killing induced by the combination of radiation and the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin: a multitarget approach to radiosensitization. Clin Cancer Res 2003; 9: 3749–3755.

    CAS  PubMed  Google Scholar 

  25. Mimnaugh EG, Xu W, Vos M, Yuan X, Isaacs JS, Bisht KS et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 2004; 3: 551–566.

    Article  CAS  Google Scholar 

  26. George P, Bali P, Cohen P, Tao J, Guo F, Sigua C et al. Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Res 2004; 64: 3645–3652.

    Article  CAS  Google Scholar 

  27. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139: 271–279.

    Article  CAS  Google Scholar 

  28. Chou T-C, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  29. Berenbaum MC . What is synergy? Pharmacol Rev 1989; 41: 93–141.

    CAS  PubMed  Google Scholar 

  30. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 2003; 278: 37832–37839.

    Article  CAS  Google Scholar 

  31. Konishi H, Matsuzaki H, Tanaka M, Takemura Y, Kuroda S, Ono Y et al. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett 1997; 410: 493–498.

    Article  CAS  Google Scholar 

  32. Martindale JL, Holbrook NJ . Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002; 192: 1–15.

    Article  CAS  Google Scholar 

  33. Porosnicu M, Nimmanapalli R, Nguyen D, Worthington E, Perkins C, Bhalla KN . Co-treatment with As2O3 enhances selective cytotoxic effects of STI-571 against Brc-Abl-positive acute leukemia cells. Leukemia 2001; 15: 772–778.

    Article  CAS  Google Scholar 

  34. Choi YJ, Park JW, Suh SI, Mun KC, Bae JH, Song DK et al. Arsenic trioxide-induced apoptosis in U937 cells involves generation of reactive oxygen species and inhibition of Akt. Int J Oncol 2002; 21: 603–610.

    CAS  PubMed  Google Scholar 

  35. Suganuma M, Kawabe T, Hori H, Funabiki T, Okamoto T . Sensitization of cancer cells to DNA damage-induced cell death by specific cell cycle G2 checkpoint abrogation. Cancer Res 1999; 59: 5887–5891.

    CAS  PubMed  Google Scholar 

  36. Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V et al. Negative regulation of cytochrome c-mediated oligomerization of apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000; 19: 4310–4322.

    Article  CAS  Google Scholar 

  37. Altieri DC . Coupling apoptosis resistance to the cellular stress response: the IAP-Hsp90 connection in cancer. Cell Cycle 2004; 3: 255–256.

    Article  CAS  Google Scholar 

  38. Douer D, Tallman MS . Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J Clin Oncol 2005; 23: 2396–2410.

    Article  CAS  Google Scholar 

  39. Chou WC, Dang CV . Acute promyelocytic leukemia: recent advances in therapy and molecular basis of response to arsenic therapies. Curr Opin Hematol 2005; 12: 1–6.

    Article  CAS  Google Scholar 

  40. Miller Jr WH, Schipper HM, Lee JS, Singer J, Waxman S . Mechanisms of action of arsenic trioxide. Cancer Res 2002; 62: 3893–3903.

    CAS  PubMed  Google Scholar 

  41. Tabellini G, Tazzari PL, Bortul R, Evangelisti C, Billi AM, Grafone T et al. Phosphoinositide 3-kinase/Akt inhibition increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias. Br J Haematol 2005; 130: 716–725.

    Article  CAS  Google Scholar 

  42. Bazarbachi A, Ghez D, Lepelletier Y, Nasr R, de The H, El-Sabban ME et al. New therapeutic approaches for adult T-cell leukaemia. Lancet Oncol 2004; 5: 664–672.

    Article  CAS  Google Scholar 

  43. Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G et al. The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Research 2003; 1: 234–246.

    CAS  Google Scholar 

  44. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    Article  CAS  Google Scholar 

  45. Tazzari PL, Cappellini A, Grafone T, Mantovani I, Ricci F, Billi AM et al. Detection of serine 473 phosphorylated Akt in acute myeloid leukaemia blasts by flow cytometry. Br J Haematol 2004; 126: 675–681.

    Article  CAS  Google Scholar 

  46. Tabellini G, Tazzari PL, Bortul R, Billi AM, Conte R, Manzoli L et al. Novel 2′-substituted, 3′-deoxy-phosphatidyl-myo-inositol analogues reduce drug resistance in human leukaemia cell lines with an activated phosphoinositide 3-kinase/Akt pathway. Br J Haematol 2004; 126: 574–582.

    Article  CAS  Google Scholar 

  47. Wang TS, Kuo CF, Jan KY, Huang H . Arsenite induces apoptosis in chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 1996; 169: 256–268.

    Article  CAS  Google Scholar 

  48. Chen Y-C, Lin-Shiau S-Y, Lin J-K . Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 1998; 177: 324–333.

    Article  CAS  Google Scholar 

  49. Iwama K, Nakajo S, Aiuchi T, Nakaya K . Apopotsis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+-dependent production of superoxide. Int J Cancer 2001; 92: 518–526.

    Article  CAS  Google Scholar 

  50. Tabellini G, Cappellini A, Tazzari PL, Fala F, Billi AM, Manzoli L et al. Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 2005; 202: 623–634.

    Article  CAS  Google Scholar 

  51. Xu W, Yuan X, Jung YJ, Yang Y, Basso A, Rosen N et al. The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells. Cancer Res 2003; 63: 7777–7784.

    CAS  PubMed  Google Scholar 

  52. Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sanchez A, Martin-Saavedra FM et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391–1400.

    Article  CAS  Google Scholar 

  53. Cozzarelli NR . The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem 1977; 46: 641–668.

    Article  CAS  Google Scholar 

  54. Inagaki A, Nakamura T, Wakisaka G . Studies on the mechanism of action of 1-â-D-arabinofuranosylcytosine as an inhibitor of DNA synthesis in human leukemic leukocytes. Cancer Res 1969; 29: 2169–2176.

    CAS  PubMed  Google Scholar 

  55. Kufe DW, Major PP, Egan EM, Beardsley GP . Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem 1980; 255: 8997–9000.

    CAS  PubMed  Google Scholar 

  56. Johnson SA . Clinical pharmacokinetics of nucleoside analogues: focus on haematological malignancies. Clin Pharmacokinet 2000; 39: 5–26.

    Article  CAS  Google Scholar 

  57. Johnson SA . Nucleoside analogues in the treatment of haematological malignancies. Expert Opin Pharmacother 2001; 2: 929–943.

    Article  CAS  Google Scholar 

  58. Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM . Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 2003; 278: 52572–52577.

    Article  CAS  Google Scholar 

  59. Huang P, Chubb S, Plunkett W . Termination of DNA synthesis by 9-beta-D-arabinofuranosyl-2-fluoroadenine. A mechanism for cytotoxicity. J Biol Chem 1990; 265: 16617–16625.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants CA85563, CA109041, CA100428, CA100632 and CA16672 from the National Cancer Institute, the National Institutes of Health. JSC is a recipient of fellowships from the American Legion Auxiliary and the Sowell-Huggins Families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelicano, H., Carew, J., McQueen, T. et al. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C. Leukemia 20, 610–619 (2006). https://doi.org/10.1038/sj.leu.2404140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404140

Keywords

This article is cited by

Search

Quick links