Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Angiogenesis in Hodgkin's lymphoma: a morphometric approach in 286 patients with prognostic implications

Abstract

The significance of angiogenesis in Hodgkin's lymphoma (HL) is not well defined. The aim of this study was to evaluate various morphometric characteristics of microvessels in lymph node sections of 286 patients with HL at diagnosis and investigate their relationship with clinicopathologic parameters and prognosis. Microvessel density (MVD), total vascular area (TVA) and several size- and shape-related microvascular parameters were quantitated – after anti-CD34 immunohistochemical staining – in the region of most intense vascularization, using image analysis. An increase in microvessel caliber parameters (area, perimeter, major and minor axis length) and a decrease in MVD were noted with increasing stage. An inverse relationship was recorded between MVD and the number of involved sites (NIS) and LDH. In univariate analysis, overall disease-specific survival was adversely affected by MVD and TVA, whereas inferior failure-free survival (FFS) was associated with the presence of more flattened vessel sections. Multivariate analysis disclosed that the extent of angiogenesis (MVD/TVA), age and the NIS independently affected overall survival. Accordingly, FFS was independently linked to the shape of microvessels and albumin levels or the NIS. In conclusion, our data support the view that angiogenesis in HL provides independent prognostic information, requiring the concomitant evaluation of quantitative and qualitative aspects of microvascular network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Canellos GP, Anderson JR, Propert KJ, Nissen N, Cooper MR, Henderson ES et al. Chemotherapy of advanced Hodgkin's disease with MOPP, ABVD or MOPP alternating with ABVD. N Engl J Med 1992; 327: 1478–1484.

    Article  CAS  PubMed  Google Scholar 

  2. Diehl V, Franklin J, Pfreundschuh M, Lathan B, Paulus U, Hasenclever D et al., German Hodgkin's Lymphoma Study Group. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin's disease. N Engl J Med 2003; 348: 2386–2395.

    Article  CAS  PubMed  Google Scholar 

  3. Vassilakopoulos TP, Angelopoulou MK, Siakantaris MP, Kontopidou FN, Dimopoulou MN, Kokoris SI et al. Combination chemotherapy plus low dose involved field radiation for early clinical stage Hodgkin's lymphoma. Int J Radiat Oncol Biol Phys 2004; 59: 765–781.

    Article  CAS  PubMed  Google Scholar 

  4. Hasenclever D, Diehl V . A prognostic score for advanced Hodgkin's disease. International Prognostic Factors Project on Advanced Hodgkin's disease. N Engl J Med 1998; 339: 1506–1514.

    Article  CAS  PubMed  Google Scholar 

  5. Folkman J . What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hlatky L, Hahnfeldt P, Folkman J . Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst 2002; 94: 883–893.

    Article  PubMed  Google Scholar 

  7. Padrö T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.

    PubMed  Google Scholar 

  8. Korkolopoulou P, Viniou N, Kavantzas N, Patsouris E, Thymara I, Pavlopoulos PM et al. Clinicopathologic correlations of bone marrow angiogenesis in chronic myeloid leukaemia. A morphometric study. Leukemia 2003; 17: 89–97.

    Article  CAS  PubMed  Google Scholar 

  9. Kini AR, Kay NE, Peterson LC . Increased bone marrow angiogenesis in B-cell chronic lymphocytic leukaemia. Leukemia 2000; 14: 1414–1418.

    Article  CAS  PubMed  Google Scholar 

  10. Korkolopoulou P, Gribabis DA, Kavantzas N, Angelopoulou MK, Siakantaris MP, Patsouris E et al. A morphometric study of bone marrow angiogenesis in hairy cell leukaemia with clinicopathological correlations. Br J Haematol 2003; 122: 900–910.

    Article  PubMed  Google Scholar 

  11. Korkolopoulou P, Apostolidou E, Pavlopoulos PM, Kavantzas N, Vyniou N, Thymara I et al. Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia 2001; 15: 1369–1376.

    Article  CAS  PubMed  Google Scholar 

  12. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000; 6: 3111–3116.

    CAS  PubMed  Google Scholar 

  13. Rajkumar SV, Fonseca R, Witzig TE, Gertz MA, Greipp RP . Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia 1999; 13: 469–472.

    Article  CAS  PubMed  Google Scholar 

  14. Vacca A, Ribatti D, Roncali L, Dammacco F . Angiogenesis in B cell lymphoproliferative diseases. Biological and clinical studies. Leuk Lymphoma 1995; 20: 27–38.

    Article  CAS  PubMed  Google Scholar 

  15. Vacca A, Ribatti D, Ruco L, Giacchetta F, Nico B, Quondamatteo F et al. Angiogenesis extent and macrophage density increase simultaneously with pathological progression in B-cell non-Hodgkin's lymphomas. Br J Cancer 1999; 79: 965–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crivellato E, Nico B, Vacca A, Ribatti A . B-cell non-Hodgkin's lymphomas express heterogeneous patterns of neovascularization. Haematologica 2003; 88: 671–678.

    PubMed  Google Scholar 

  17. Ribatti D, Vacca A, Marzullo A, Nico B, Ria R, Roncali L et al. Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkin's lymphomas. Int J Cancer 2000; 85: 171–175.

    Article  CAS  PubMed  Google Scholar 

  18. Ridell B, Norrby K . Intratumoral microvascular density in malignant lymphomas of B-cell origin. APMIS 2001; 109: 66–72.

    Article  CAS  PubMed  Google Scholar 

  19. Hazar B, Paydas S, Zorludemir S, Sahin B, Tuncer I . Prognostic significance of microvessel density and vascular endothelial growth factor (VEGF) expression in non-Hodgkin's lymphoma. Leuk Lymphoma 2003; 44: 2089–2093.

    Article  CAS  PubMed  Google Scholar 

  20. Salven P, Orpana A, Teerenhovi L, Joensuu H . Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 2000; 96: 3712–3718.

    CAS  PubMed  Google Scholar 

  21. Foss HD, Araujo I, Demel G, Klotzbach H, Hummel M, Stein H . Expression of vascular endothelial growth factor in lymphomas and Castleman disease. J Pathol 1997; 183: 44–50.

    Article  CAS  PubMed  Google Scholar 

  22. Doussis-Anagnostopoulou JA, Talks KL, Turley H, Debnam P, Tan DC, Mariatos G et al. Vascular endothelial growth factor (VEGF) is expressed by neoplastic Hodgkin–Reed–Sternberg cells in Hodgkin's disease. J Pathol 2002; 197: 677–683.

    Article  CAS  PubMed  Google Scholar 

  23. Vassilakopoulos TP, Nadali G, Angelopoulou MK, Siakantaris MP, Dimopoulou MN, Kontopidou FN et al. Serum interleukin-10 levels are an independent prognostic factor for patients with Hodgkin's lymphoma. Haematologica 2001; 86: 274–281.

    CAS  PubMed  Google Scholar 

  24. Rassidakis GZ, Medeiros J, Vassilakopoulos TP, Viviani S, Bonfante V, Nadali G et al. Bcl-2 expression in Hodgkin and Reed–Sternborg cells of classical Hodgkin disease predicts a poorer prognosis in patients treated with ABVD or equivalent regimens. Blood 2002; 100: 3935–3941.

    Article  CAS  PubMed  Google Scholar 

  25. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH . Tumor angiogenesis: a new significant and independent indicator on early-stage breast carcinoma. J Natl Cancer Inst 1992; 84: 1875–1887.

    Article  CAS  PubMed  Google Scholar 

  26. Fox E, Ulrich C . Sigma Scan Image Measurement Software, User's manual, 1995. Sigma Scan, Jandel, Scientific, Erkrath, Germany.

  27. Pavlopoulos PM, Konstantinidou AE, Agapitos E, Kavantzas N, Nikolopoulou P, Davaris P . A morphometric study of neovascularization in colorectal carcinoma. Cancer 1998; 83: 2067–2075.

    Article  CAS  PubMed  Google Scholar 

  28. Vassilakopoulos TP, Pangalis GA . Biological prognostic factors in Hodgkin's lymphoma. Haema 2004; 7: 147–164.

    CAS  Google Scholar 

  29. Schnitt SJ . The real value of angiogenesis research in breast cancer. Adv Anat Pathol 1997; 4: 23–27.

    Article  Google Scholar 

  30. Nakopoulou L, Lekkas N, Lazaris AC, Athanassiadou P, Giannopoulou I, Mavrommatis J et al. An immunohistochemical analysis of angiogenesis in invasive breast cancer with correlations to clinicopathologic predictors. Anticancer Res 1999; 19: 4547–4553.

    CAS  PubMed  Google Scholar 

  31. Vogel AW . Intratumoral vascular changes with increased size of a mammary adenocarcinoma: new method and results. J Natl Cancer Inst 1965; 34: 571–578.

    CAS  PubMed  Google Scholar 

  32. Rastinejad F, Polverini PJ, Bouch NP . Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989; 56: 345–355.

    Article  CAS  PubMed  Google Scholar 

  33. Guidi AJ, Fisher L, Harris JR, Schnitt SJ . Microvessel density and distrirbution in ductal carcinoma in situ of the breast. J Natl Cancer Inst 1992; 23: 755–761.

    Google Scholar 

  34. Smith-McCune KK, Weidner N . Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 1994; 54: 800–804.

    CAS  PubMed  Google Scholar 

  35. Asahara T, Chen T, Takahashi T, Fujikaiva K, Kearney M, Magner M et al. Tie 2 receptor ligands, angiopoietin-1 and angiopoietin-2 modulate VEGF-induced postnatal neovascularization. Circ Res 1998; 83: 233–240.

    Article  CAS  PubMed  Google Scholar 

  36. Agarwal B, Naresh KN . Re: Doussis-Anagnostopoulou IA et al. Vascular endothelial growth factor (VEGF) is expressed by neoplastic Hodgkin–Reed–Sternberg cells in Hodgkin's disease. J Pathol 2003; 201: 334–335.

    Article  PubMed  Google Scholar 

  37. Brown RE, Nazmi RK . The Reed–Sternberg cell: molecular characterization by proteomic analysis with therapeutic implications. Ann Clin Lab Sci 2002; 32: 339–351.

    CAS  PubMed  Google Scholar 

  38. Folkman J, Shing Y . Angiogenesis. J Biol Chem 1992; 267: 10931–10934.

    CAS  PubMed  Google Scholar 

  39. Folkman J . Clinical applications of research on angiogenesis. N Engl J Med 1995; 333: 1757–1763.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant provided by IASIS, a nonprofit organization raising funds for research in leukemias, lymphomas and related disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Korkolopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkolopoulou, P., Thymara, I., Kavantzas, N. et al. Angiogenesis in Hodgkin's lymphoma: a morphometric approach in 286 patients with prognostic implications. Leukemia 19, 894–900 (2005). https://doi.org/10.1038/sj.leu.2403690

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403690

Keywords

This article is cited by

Search

Quick links