Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Immunophenotypes

Phenotype and function of a CD56+ peripheral blood monocyte

Abstract

G-CSF primed CD34 cells cultured for 2–3 weeks in IL-2 and stem cell factor generate CD56high cells with phenotypic and morphologic features of NK cells, and a novel adherent CD56low CD16− population expressing myeloid markers (CD33 and HLA-DR). We hypothesized that similar cells might also occur in peripheral blood. In 13/13 normal individuals, we found a circulating population of CD56low, CD33+, FcγRI+, FcγRII+, HLA-DR+, CD11bhigh, CD14+ monocytes closely resembling the cultured CD56lowCD33+ cells. They may represent a normal counterpart of the CD56+ CD33+ hybrid myeloid/natural killer cell leukemia. Their mean frequency was 1.3±1% (standard deviation), range 0.16–3.5%, of total mononuclear cells. CD56lowCD33+ cells, primed with cytomegalovirus antigen, induced autologous T-lymphocyte proliferation comparably to CD56−, CD14+ peripheral blood monocytes (PBM). Conversely, CD56low cells induced greater T-cell proliferation than CD56− PBM when lymphocyte responders were HLA mismatched. Unstimulated CD56lowCD33+ cells showed a low antiproliferative effect on K562, which was increased upon LPS stimulation. The pattern of cytokine production by CD56lowCD33+ cells and PBM largely overlapped; however, they produced detectable levels of IL-6 and IL-1β. These results define a minor monocyte population with distinct phenotypic and functional features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Edelman GM . Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol 1986; 2: 81–116.

    Article  CAS  PubMed  Google Scholar 

  2. Edelman GM . Morphoregulatory molecules. Biochemistry 1988; 27: 3533–3543.

    Article  CAS  PubMed  Google Scholar 

  3. Comeau MR, Van der Vuurst de Vries AR, Maliszewski CR, Galimbert L . CD123 bright plasmacytoid predendritic cells: progenitors undergoing cell fate coversion? J Immunol 2002; 169: 75–83.

    Article  CAS  PubMed  Google Scholar 

  4. Miller JS, Verfaillie C, McGlave P . The generation of human natural killer cells from CD34+/DR− primitive progenitors in long-term bone marrow culture. Blood 1992; 80: 2182–2187.

    CAS  PubMed  Google Scholar 

  5. Mrozek E, Anderson P, Caligiuri MA . Role of Interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitors cells. Blood 1996; 87: 2632–2640.

    CAS  PubMed  Google Scholar 

  6. Sconocchia G, Fujiwara H, Rezvani K, Keyvanfar K, El Ouriaghli F, Grube M et al. G-CSF mobilized CD34+ cells cultured in interleukin-2 and stem cell factor generate a phenotypically novel monocyte. J Leuk Biol 2004; in press.

  7. McKenzie D . Alloantigen presentation by B cells. J Immunol 1988; 141: 2907–2911.

    CAS  PubMed  Google Scholar 

  8. Renauld JC, Vink A, VAN Snick J . Accessory signals in murine cytolytic T cell responses: dual requirement for IL-1 and IL-6. J Immunol 1989; 143: 1894–1898.

    CAS  PubMed  Google Scholar 

  9. Kembala M, Uracz W, Ruggiero I, Mytar B, Pryjma J . Isolation and functional characteristics of FcR+ and FcR− human monocyte subsets. J Immunol 1984; 133: 1293–1299.

    Google Scholar 

  10. Lanier LL, Le AM, Phillips JH, Warner NL, Babcock GF . Subpopulation of human natural killer cells defined by expression of the LEU-7 (HNK-1) and LEU-11 (NK-15) antigens. J Immunol 1983; 131: 1789–1796.

    CAS  PubMed  Google Scholar 

  11. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH . The relationship of CD16 (LEU-11) and LEU-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 1986; 136: 4480–4486.

    CAS  PubMed  Google Scholar 

  12. Phillips JH, Lanier LL . Dissection of the lymphokine-activated killer phenomenon. J Exp Med 1986; 164: 814–825.

    Article  CAS  PubMed  Google Scholar 

  13. Ikushima S, Yoshihara T, Matsumura T, Misawa S, Morioka Y, Hibi S et al. Expression of CD56/NCAM on hematopoietic malignant cells. A useful marker for acute monocytic and megakaryocytic leukemias. Int J Hematol 1991; 54: 395–403.

    CAS  PubMed  Google Scholar 

  14. Raspadori D, Damiani D, Lenoci M, Rondelli D, Testoni N, Nardi G et al. CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia 2001; 15: 1161–1164.

    Article  CAS  PubMed  Google Scholar 

  15. Petrella T, Comeau MR, Maynadie' M, Couillault G, De Muret A, Maliszewski CR et al. Agranular CD4+CD56+ hematodermic neoplasm (blastic NK-cell lymphoma) originates from a population of CD56+ precursor related to plasmacytoid monocytes. Am J Surg Pathol 2002; 26: 852–862.

    Article  PubMed  Google Scholar 

  16. Nitta T, Yagita H, Sato K, Okumura K . Involvement of CD56 (NKH-1/Leu-19 antigen) as an adhesion molecule in natural killer–target cell interaction. J Exp Med 1989; 170: 1757–1761.

    Article  CAS  PubMed  Google Scholar 

  17. Lanier LL, Chang C, Azuma M, Ruitenberg JJ, Hemperly JJ, Phillips JH . Molecular and functional analysis of human natural killer cell-associated neural cell adhesion molecule (N/CAM/CD56). J Immunol 1991; 12: 4421–4426.

    Google Scholar 

  18. Sconocchia G, Titus JA, Mazzoni A, Visintin A, Pericle F, Hicks SW et al. CD38 triggers cytotoxic responses in activated human natural killer cells. Blood 1999; 94: 3864–3871.

    CAS  PubMed  Google Scholar 

  19. Suzuki R, Yamamoto K, Seto M, Kagami Y, Ogura M, Yatabe Y et al. CD7+ and CD56+ myeloid/natural killer cell precursor acute leukemia: a distinct hematolymphoid entity. Blood 1997; 90: 2417–2428.

    CAS  PubMed  Google Scholar 

  20. Feuillard J, Jacob MC, Valensi F, Maynadie' M, Gressin R, Chaperot L et al. Clinical and biologic features of CD4+CD56+ malignancies. Blood 2003; 99: 1556–1563.

    Article  Google Scholar 

  21. Penven K, Macro M, Salaun V, Comoz F, Reman O, Leroy D et al. Skin manifestation in CD4+CD56+ malignancies. Eur J Dermatol 2003; 13: 161–165.

    PubMed  Google Scholar 

  22. Ziegler-Heitbrock HWL, Passlick B, Flieger D . The monoclonal antimonocyte antibody My4 stains B lymphocytes and two distinct monocytes subsets in human peripheral blood. Hybridoma 1988; 7: 521–527.

    Article  CAS  PubMed  Google Scholar 

  23. Passlick B, Flieger D, Ziegler-Heitbrock HWL . Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989; 74: 2527–2534.

    CAS  PubMed  Google Scholar 

  24. Ziegler-Heitbrock HWL, Fingerle G, Strobel M, Schraut W, Stelter F, Schuett C et al. The novel subset of CD14+CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol 1993; 23: 2053–2058.

    Article  CAS  PubMed  Google Scholar 

  25. Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N . CD14lowCD16high: a cytokine-producing monocytes subset expands during human immunodeficiency virus infection. Eur J Immunol 1995; 25: 3418–3424.

    Article  CAS  PubMed  Google Scholar 

  26. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS . Unique monocyte subset in patients with AIDS dementia. Lancet 1997; 349: 692–695.

    Article  CAS  PubMed  Google Scholar 

  27. Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 2002; 168: 3536–3542.

    Article  CAS  PubMed  Google Scholar 

  28. Ziegler-Heitbrock HWL . Heterogeneity of human blood monocytes: the CD14+CD16+ subpopulation. Immunol Today 1999; 17: 424–428.

    Article  Google Scholar 

  29. Grage-Griebenow E, Zawatzky R, Kahlert H, Brade L, Flad HD, Ernst M . Identification of a novel dendritic cell-like subset of CD64+/CD16+ blood monocytes. Eur J Immunol 2001; 31: 48–56.

    Article  CAS  PubMed  Google Scholar 

  30. Keller R . Macrophage-mediated natural cytotoxicity against various target cells in vitro. II. Macrophages from rats of different ages. Br J Haematol 1978; 37: 742–746.

    CAS  Google Scholar 

  31. Tagliabue A, Mantovani A, Kilgallen M, Herberman RB, McCoy JL . Natural cytotoxicity of mouse monocytes and macrophages. J Immunol 1979; 122: 2363–2370.

    CAS  PubMed  Google Scholar 

  32. Perri RT, Kay NE, McCarthy J, Vessella RL, Jacob HS, Furcht LT . Fibronectin enhances in vitro monocyte-macrophage-mediated tomoricidal activity. Blood 1982; 60: 430–435.

    CAS  PubMed  Google Scholar 

  33. Andreesen R, Osterholz J, Bross KJ, Schulz A, Luckenbach GA, Lohr GW . Cytotoxic effector cell function at different stages of human monocyte-macrophage maturation. Cancer Res 1983; 43: 5931–5936.

    CAS  PubMed  Google Scholar 

  34. Burns GF, Triglia T, Bartlett PF, Mackay IR . Human natural killer cells, activated lymphocyte killer cells, and monocytes possess similar cytotoxic mechanisms. Proc Natl Acad Sci USA 1983; 80: 7606–7610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ziegler-Heitbrock HWL, Riethmuller G . A rapid assay for cytotoxicity of unstimulated human monocytes. J Natl Cancer Inst 1984; 72: 23–29.

    Article  CAS  PubMed  Google Scholar 

  36. De Maria R, Cifone MG, Trotta R, Rippo MR, Festuccia C, Santoni A et al. Triggering of human monocyte activation through CD69, a member of the natural killer cell gene complex family of signal transducing receptors. J Exp Med 1994; 180: 1999–2004.

    Article  CAS  PubMed  Google Scholar 

  37. Zembala M, Uracz W, Ruggiero I, Mytar B, Pryjma J . Isolation and functional characteristics of FcR+ and FcR− human monocyte subsets. J Immunol 1984; 133: 1293–1299.

    CAS  PubMed  Google Scholar 

  38. Hu X, Tang M, Fisher AB, Olashaw N, Zuckerman KS . TNF-alpha-induced growth suppression of CD34+ myeloid leukemic cell lines signals through TNF receptor type I and is associated with NF-kappa B activation. J Immunol 1999; 163: 3106–3115.

    CAS  PubMed  Google Scholar 

  39. Massague J . The transforming growth factor-beta family. Annu Rev Cell Biol 1990; 6: 597–641.

    Article  CAS  PubMed  Google Scholar 

  40. Martin JHJ, Edwards SW . Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. J Immunol 1993; 150: 3478–3486.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Alessandra Mazzoni (Experimental Immunology Branch, NCI, NIH) for helpful discussion and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Barrett.

Additional information

This article is a ‘United States Government Work’ paper, as defined by the US Copyright Act

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sconocchia, G., Keyvanfar, K., El Ouriaghli, F. et al. Phenotype and function of a CD56+ peripheral blood monocyte. Leukemia 19, 69–76 (2005). https://doi.org/10.1038/sj.leu.2403550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403550

Keywords

This article is cited by

Search

Quick links