Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Apoptosis

Caspase-dependent, geldanamycin-enhanced cleavage of co-chaperone p23 in leukemic apoptosis

Abstract

Co-chaperone p23 is a component of the heat-shock protein (Hsp)90 multiprotein-complex and is an important modulator of Hsp90 activity. Hsp90 client proteins involved in oncogenic survival signaling are frequently mutated in leukemia, and the integrity of the Hsp90 complex could therefore be important for leukemic cell survival. We demonstrate here that p23 is cleaved to a stable 17 kDa fragment in leukemic cell lines treated with commonly used chemotherapeutic drugs. The cleavage of p23 paralleled the activation of procaspase-7 and -3 and was suppressed by the caspase-3/-7 inhibitor DEVD-FMK. In vitro translated 35S-p23 (in reticulocyte lysate) was cleaved at D142 and D145 by caspase-7 and -3. Cleavage of p23 occurred in caspase-3-deficient MCF-7 cells, suggesting a role for caspase-7 in intact cells. The Hsp90 inhibitor geldanamycin enhanced caspase-dependent p23 cleavage both in vitro and in intact cells. Geldanamycin also enhanced anthracycline-induced caspase activation and apoptosis. We conclude that p23 is a prominent target in leukemic cell apoptosis. Geldanamycin enhanced p23 cleavage both by rendering p23 more susceptible to caspases and by enhancing chemotherapy-induced caspase activation. These findings underscore the importance of the Hsp90-complex in antileukemic treatment, and suggest that p23 may have a role in survival signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Droin N, Dubrez L, Eymin B, Renvoize C, Breard J, Dimanche-Boitrel MT et al. Upregulation of CASP genes in human tumor cells undergoing etoposide-induced apoptosis. Oncogene 1998; 16: 2885–2894.

    Article  CAS  Google Scholar 

  2. Belaud-Rotureau MA, Durrieu F, Labroille G, Lacombe F, Fitoussi O, Agape P et al. Study of apoptosis-related responses of leukemic blast cells to in vitro anthracycline treatment. Leukemia 2000; 14: 1266–1275.

    Article  CAS  Google Scholar 

  3. Gewirtz DA . A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999; 57: 727–741.

    Article  CAS  Google Scholar 

  4. Laurent G, Jaffrezou JP . Signaling pathways activated by daunorubicin. Blood 2001; 98: 913–924.

    Article  CAS  Google Scholar 

  5. Neckers L, Mimnaugh E, Schulte TW . Hsp90 as an anti-cancer target. Drug Resist Updat 1999; 2: 165–172.

    Article  CAS  Google Scholar 

  6. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 1997; 272: 23843–23850.

    Article  CAS  Google Scholar 

  7. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425: 407–410.

    Article  CAS  Google Scholar 

  8. Banerji U, Judson I, Workman P . The clinical applications of heat shock protein inhibitors in cancer – present and future. Curr Cancer Drug Targets 2003; 3: 385–390.

    Article  CAS  Google Scholar 

  9. Richter K, Buchner J . Hsp90: chaperoning signal transduction. J Cell Physiol 2001; 188: 281–290.

    Article  CAS  Google Scholar 

  10. Pratt WB, Toft DO . Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228: 111–133.

    Article  CAS  Google Scholar 

  11. Pratt WB, Toft DO . Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997; 18: 306–360.

    CAS  PubMed  Google Scholar 

  12. Neckers L, Schulte TW, Mimnaugh E . Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs 1999; 17: 361–373.

    Article  CAS  Google Scholar 

  13. Bose S, Weikl T, Bugl H, Buchner J . Chaperone function of Hsp90-associated proteins. Science 1996; 274: 1715–1717.

    Article  CAS  Google Scholar 

  14. Freeman BC, Toft DO, Morimoto RI . Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science 1996; 274: 1718–1720.

    Article  CAS  Google Scholar 

  15. Johnson JL, Toft D . Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 1995; 9: 670–678.

    CAS  PubMed  Google Scholar 

  16. Mimnaugh EG, Chavany C, Neckers L . Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 1996; 271: 22796–22801.

    Article  CAS  Google Scholar 

  17. An WG, Schulte TW, Neckers LM . The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 2000; 11: 355–360.

    CAS  PubMed  Google Scholar 

  18. Donze O, Abbas-Terki T, Picard D . The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. EMBO J 2001; 20: 3771–3780.

    Article  CAS  Google Scholar 

  19. Vanden Berghe T, Kalai M, van Loo G, Declercq W, Vandenabeele P . Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem 2003; 278: 5622–5629.

    Article  CAS  Google Scholar 

  20. Mollerup J, Krogh TN, Nielsen PF, Berchtold MW . Properties of the co-chaperone protein p23 erroneously attributed to ALG-2 (apoptosis-linked gene 2). FEBS Lett 2003; 555: 478–482.

    Article  CAS  Google Scholar 

  21. Weikl T, Abelmann K, Buchner J . An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function. J Mol Biol 1999; 293: 685–691.

    Article  CAS  Google Scholar 

  22. Schagger H, von Jagow G . Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 1987; 166: 368–379.

    Article  CAS  Google Scholar 

  23. Kobayashi T, Nakatani Y, Tanioka T, Tsujimoto M, Nakajo S, Nakaya K et al. Regulation of cytosolic prostaglandin E synthase by phosphorylation. Biochem J 2004; 381: 59–69.

    Article  CAS  Google Scholar 

  24. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valenci F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086.

    CAS  Google Scholar 

  25. Strasser A, O’Connor L, Dixit VM . Apoptosis signaling. Annu Rev Biochem 2000; 69: 217–245.

    Article  CAS  Google Scholar 

  26. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995; 81: 801–809.

    Article  CAS  Google Scholar 

  27. Germain M, Affar EB, D’Amours D, Dixit VM, Salvesen GS, Poirier GG . Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem 1999; 274: 28379–28384.

    Article  CAS  Google Scholar 

  28. Slee EA, Adrain C, Martin SJ . Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 2001; 276: 7320–7326.

    Article  CAS  Google Scholar 

  29. Janicke RU, Sprengart ML, Wati MR, Porter AG . Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 273: 9357–9360.

    Article  CAS  Google Scholar 

  30. Thornberry NA . Caspases: key mediators of apoptosis. Chem Biol 1998; 5: R97–103.

    Article  CAS  Google Scholar 

  31. Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000; 19: 4310–4322.

    Article  CAS  Google Scholar 

  32. Rashmi R, Santhosh Kumar TR, Karunagaran D . Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. FEBS Lett 2003; 538: 19–24.

    Article  CAS  Google Scholar 

  33. Chant ID, Rose PE, Morris AG . Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br J Haematol 1995; 90: 163–168.

    Article  CAS  Google Scholar 

  34. Felts SJ, Toft DO . p23, a simple protein with complex activities. Cell Stress Chaperones 2003; 8: 108–113.

    Article  CAS  Google Scholar 

  35. Oxelmark E, Knoblauch R, Arnal S, Su LF, Schapira M, Garabedian MJ . Genetic dissection of p23, an Hsp90 cochaperone, reveals a distinct surface involved in estrogen receptor signaling. J Biol Chem 2003; 278: 36547–36555.

    Article  CAS  Google Scholar 

  36. Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I . Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 2000; 275: 32775–32782.

    Article  CAS  Google Scholar 

  37. Tanioka T, Nakatani Y, Kobayashi T, Tsujimoto M, Oh-ishi S, Murakami M et al. Regulation of cytosolic prostaglandin E2 synthase by 90-kDa heat shock protein. Biochem Biophys Res Commun 2003; 303: 1018–1023.

    Article  CAS  Google Scholar 

  38. Sandal T, Stapnes C, Kleivdal H, Hedin L, Doskeland SO . A novel, extraneuronal role for cyclin-dependent protein kinase 5 (CDK5): modulation of cAMP-induced apoptosis in rat leukemia cells. J Biol Chem 2002; 277: 20783–20793.

    Article  CAS  Google Scholar 

  39. Krakstad C, Christensen AE, Doskeland SO . cAMP protects against TNF-{alpha}-induced apoptosis by activation of cAMP-dependent protein kinase, independently of exchange protein directly activated by cAMP (Epac). J Leukoc Biol 2004; 76: 641–647.

    Article  CAS  Google Scholar 

  40. Korfali N, Ruchaud S, Loegering D, Bernard D, Dingwall C, Kaufmann SH et al. Caspase-7 gene disruption reveals an involvement of the enzyme during the early stages of apoptosis. J Biol Chem 2004; 279: 1030–1039.

    Article  CAS  Google Scholar 

  41. Morita A, Suzuki N, Matsumoto Y, Hirano K, Enomoto A, Zhu J et al. p41 as a possible marker for cell death is generated by caspase cleavage of p42/SETbeta in irradiated MOLT-4 cells. Biochem Biophys Res Commun 2000; 278: 627–632.

    Article  CAS  Google Scholar 

  42. Jung YS, Kim KS, Kim KD, Lim JS, Kim JW, Kim E . Apoptosis-linked gene 2 binds to the death domain of Fas and dissociates from Fas during Fas-mediated apoptosis in Jurkat cells. Biochem Biophys Res Commun 2001; 288: 420–426.

    Article  CAS  Google Scholar 

  43. Nimmanapalli R, O’Bryan E, Kuhn D, Yamaguchi H, Wang HG, Bhalla KN . Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-XL, and Bax downstream of 17-AAG-mediated down-regulation of Akt, Raf-1, and Src kinases. Blood 2003; 102: 269–275.

    Article  CAS  Google Scholar 

  44. Schulte TW, Neckers LM . The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 1998; 42: 273–279.

    Article  CAS  Google Scholar 

  45. Hutchison KA, Stancato LF, Owens-Grillo JK, Johnson JL, Krishna P, Toft DO et al. The 23-kDa acidic protein in reticulocyte lysate is the weakly bound component of the hsp foldosome that is required for assembly of the glucocorticoid receptor into a functional heterocomplex with hsp90. J Biol Chem 1995; 270: 18841–18847.

    Article  CAS  Google Scholar 

  46. Murphy PJ, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB . Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem 2001; 276: 30092–30098.

    Article  CAS  Google Scholar 

  47. Blagosklonny MV, Fojo T, Bhalla KN, Kim JS, Trepel JB, Figg WD et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy. Leukemia 2001; 15: 1537–1543.

    Article  CAS  Google Scholar 

  48. Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH . Flt3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res 2003; 9: 4483–4493.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Norwegian Cancer Society, PROBE National Proteomics Unit at the University of Bergen, The Norwegian Research Council FUGE Grant number 151859 and Interuniversity Attraction Poles IUAP B5/05 (J.V.). The expert assistance of Magda Puype, Nina Lied-Larsen, Erna Finsås, Line Wergeland and Therese Bredholt is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-O Døskeland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gausdal, G., Gjertsen, B., Fladmark, K. et al. Caspase-dependent, geldanamycin-enhanced cleavage of co-chaperone p23 in leukemic apoptosis. Leukemia 18, 1989–1996 (2004). https://doi.org/10.1038/sj.leu.2403508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403508

Keywords

This article is cited by

Search

Quick links