Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biotechnical Methods Section (BTS)

Rapid amplification of immunoglobulin heavy chain switch (IGHS) translocation breakpoints using long-distance inverse PCR

Abstract

Molecular cloning of immunoglobulin heavy chain (IGH) translocation breakpoints identifies genes of biological importance in the development of normal and malignant B cells. Long-distance inverse PCR (LDI-PCR) was first applied to amplification of IGH gene translocations targeted to the joining (IGHJ) regions. We report here successful amplification of the breakpoint of IGH translocations targeted to switch (IGHS) regions by LDI-PCR. To detect IGHS translocations, Southern blot assays using 5′ and 3′ switch probes were performed. Illegitimate Sμ rearrangements were amplified from the 5′ end (5′Sμ LDI-PCR) from the alternative derivative chromosome, and those of Sγ or Sα were amplified from the 3′ end (3′Sγ or 3′α LDI-PCR) from the derivative chromosome 14. Using a combination of these methods, we have succeeded in amplifying IGHS translocation breakpoints involving FGFR3/MMSET on 4p16, BCL6 on 3q27, MYC on 8q24, IRTA1 on 1q21 and PAX5 on 9p13 as well as BCL11A on 2p13 and CCND3 on 6p21. The combination of LDI-PCR for IGHJ and IGHS allows rapid molecular cloning of almost all IGH gene translocation breakpoints.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Tamura A, Miura I, Iida S, Yokota S, Horiike S, Nishida K et al. Interphase detection of immunoglobulin heavy chain gene translocations with specific oncogene loci in 173 patients with B-cell lymphoma. Cancer Genet Cytogenet 2001; 129: 1–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bergsagel PL, Kuehl WM . Chromosome translocations in multiple myeloma. Oncogene 2001; 20: 5611–5622.

    Article  CAS  PubMed  Google Scholar 

  3. Willis TG, Dyer MJS . The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000; 96: 808–822.

    CAS  PubMed  Google Scholar 

  4. Cigudosa JC, Parsa NZ, Louie DC, Filippa DA, Jhanwar SC, Johansson B et al. Cytogenetic analysis of 363 consecutively ascertained diffuse large B-cell lymphomas. Genes Chromosomes Cancer 1999; 25: 123–133.

    Article  CAS  PubMed  Google Scholar 

  5. Satterwhite E, Sonoki T, Willis TG, Harder L, Nowak R, Arriola EL et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 2001; 98: 3413–3420.

    Article  CAS  PubMed  Google Scholar 

  6. Hatzivassiliou G, Miller I, Takizawa J, Palanisamy N, Rao PH, Iida S et al. IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome 1q21 abnormalities in B cell malignancy. Immunity 2001; 14: 277–289.

    Article  CAS  PubMed  Google Scholar 

  7. Sonoki T, Harder L, Horsman DE, Karran L, Taniguchi I, Willis TG et al. Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood 2001; 98: 2837–2844.

    Article  CAS  PubMed  Google Scholar 

  8. Shaughnessy Jr J, Gabrea A, Qi Y, Brents L, Zhan F, Tian E et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98: 217–223.

    Article  CAS  PubMed  Google Scholar 

  9. Kawamata N, Sakajiri S, Sugimoto KJ, Isobe Y, Kobayashi H, Oshimi K . A novel chromosomal translocation t(1;14)(q25;q32) in pre-B acute lymphoblastic leukemia involves the LIM homeodomain protein gene, Lhx4. Oncogene 2002; 21: 4983–4991.

    Article  CAS  PubMed  Google Scholar 

  10. Honjo T, Matsuta F . Immunoglobulin heavy chain loci of mouse and human. In: Honjo T, Alt FW (eds). Immunoglobulin Genes. London, UK: Academic Press, 1995, pp 145–171.

    Chapter  Google Scholar 

  11. Kuppers R, Dalla-Favera R . Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 2001; 20: 5580–5594.

    Article  CAS  PubMed  Google Scholar 

  12. Willis TG, Jadayel DM, Coignet LJ, Abdul-Rauf M, Treleaven JG, Catovsky D et al. Rapid molecular cloning of rearrangements of the IGHJ locus using long-distance inverse polymerase chain reaction. Blood 1997; 90: 2456–2464.

    CAS  PubMed  Google Scholar 

  13. Hata H, Matsuzaki H, Sonoki T, Takemoto S, Kuribayashi N, Nagasaki A et al. Establishment of a CD45-positive immature plasma cell line from an aggressive multiple myeloma with high serum lactate dehydrogenase. Leukemia 1994; 8: 1768–1773.

    CAS  PubMed  Google Scholar 

  14. Uchida Y, Miyazawa K, Yaguchi M, Gotoh A, Iwase O, Ohyashiki K et al. Establishment of novel B-lymphoma cell line, CTB-1, with strong Fas antigen expression having chromosomal translocation t(14;22). Int J Oncol 1997; 10: 1103–1107.

    CAS  PubMed  Google Scholar 

  15. Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM . Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996; 93: 13931–13936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL . The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998; 92: 3025–3034.

    CAS  PubMed  Google Scholar 

  17. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997; 16: 260–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez-Izquierdo D, Siebert R, Harder L, Marugan I, Gozzetti A, Price HP et al. Detection of translocations affecting the BCL6 locus in B cell non-Hodgkin's lymphoma by interphase fluorescence in situ hybridization. Leukemia 2001; 15: 1475–1484.

    Article  CAS  PubMed  Google Scholar 

  19. Falini B, Tiacci E, Pucciarini A, Bigerna B, Kurth J, Hatzivassiliou G et al. Expression of the IRTA1 receptor identifies intraepithelial and subepithelial marginal zone B cells of the mucosa-associated lymphoid tissue (MALT). Blood 2003; 102: 3684–3692.

    Article  CAS  PubMed  Google Scholar 

  20. Davis RS, Wang YH, Kubagawa H, Cooper MD . Identification of a family of Fc receptor homologs with preferential B cell expression. Proc Natl Acad Sci USA 2001; 98: 9772–9777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morrison AM, Jager U, Chott A, Schebesta M, Haas OA, Busslinger M . Deregulated PAX-5 transcription from a translocated IgH promoter in marginal zone lymphoma. Blood 1998; 92: 3865–3878.

    CAS  PubMed  Google Scholar 

  22. Iida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 1996; 88: 4110–4117.

    CAS  PubMed  Google Scholar 

  23. Hamada T, Yonetani N, Ueda C, Maesako Y, Akasaka H, Akasaka T et al. Expression of the PAX5/BSAP transcription factor in haematological tumour cells and further molecular characterization of the t(9;14)(p13;q32) translocation in B-cell non-Hodgkin's lymphoma. Br J Haematol 1998; 102: 691–700.

    Article  CAS  PubMed  Google Scholar 

  24. Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z . Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA 1996; 93: 6129–6134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pellet P, Berger R, Bernheim A, Brouet JC, Tsapis A . Molecular analysis of a t(9;14)(p11;q32) translocation occurring in a case of human alpha heavy chain disease. Oncogene 1989; 4: 653–657.

    CAS  PubMed  Google Scholar 

  26. Dyer MJS, Heward JM, Zani VJ, Buccheri V, Catovsky D . Unusual deletions within the immunoglobulin heavy-chain locus in acute leukemias. Blood 1993; 82: 865–871.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Lady Tata Foundation, The Daiwa Anglo-Japanese Foundation, Deutsche Krebshilfe and The Human Resources Support Foundation under Kumamoto City Municipal Centennial Commemorative Project. We thank Dr Abraham Karpas (University of Cambridge, UK) for kindly providing the Karpas 1718 cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J S Dyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sonoki, T., Willis, T., Oscier, D. et al. Rapid amplification of immunoglobulin heavy chain switch (IGHS) translocation breakpoints using long-distance inverse PCR. Leukemia 18, 2026–2031 (2004). https://doi.org/10.1038/sj.leu.2403500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403500

Keywords

  • IGH switch region
  • translocation
  • LDI-PCR

This article is cited by

Search

Quick links