Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Hematological defects in the oc/oc mouse, a model of infantile malignant osteopetrosis

Abstract

Infantile malignant osteopetrosis (IMO) is a rare and lethal disease characterized by an absence of bone resorption due to inactive OCLs. Affected patients display an increased bone mass and hematological defects. The osteopetrotic oc/oc mouse displays a bone phenotype similar to the one observed in IMO patients, and the same gene, Tcirg1, is mutated in this model and in the majority of these patients. Therefore, we explored in oc/oc mice the consequences of the perturbed bone microenvironment on hematopoiesis. We show that the myelomonocytic differentiation is increased, leading to an elevated number of OCLs and dendritic cells. B lymphopoiesis is blocked at the pro-B stage in the bone marrow of oc/oc mouse, leading to a low mature B-cell number. T-cell activation is also affected, with a reduction of IFNγ secretion by splenic CD4+ T cells. These alterations are associated with a low IL-7 expression in bone marrow. All these data indicate that the lack of bone resorption in oc/oc mice has important consequences in both myelopoiesis and lymphopoiesis, leading to a form of immunodeficiency. The oc/oc mouse is therefore an appropriate model to understand the hematological defects described in IMO patients, and to derive new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lazner F, Gowen M, Pavasovic D, Kola I . Osteopetrosis and osteoporosis: two sides of the same coin. Hum Mol Genet 1999; 8: 1839–1846.

    Article  CAS  Google Scholar 

  2. Wilson CJ, Vellodi A . Autosomal recessive osteopetrosis: diagnosis, management, and outcome. Arch Dis Child 2000; 83: 449–452.

    Article  CAS  Google Scholar 

  3. McLean W, Olsen BR . Mouse models of abnormal skeletal development and homeostasis. Trends Genet 2001; 17: S38–S43.

    Article  CAS  Google Scholar 

  4. Scimeca JC, Franchi A, Trojani C, Parrinello H, Grosgeorge J, Robert C et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 2000; 26: 207–213.

    Article  CAS  Google Scholar 

  5. Nakamura I, Takahashi N, Udagawa N, Moriyama Y, Kurokawa T, Jimi E et al. Lack of vacuolar proton ATPase association with the cytoskeleton in osteoclasts of osteosclerotic (oc/oc) mice. FEBS Lett 1997; 401: 207–212.

    Article  CAS  Google Scholar 

  6. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 2003; 9: 399–406.

    Article  CAS  Google Scholar 

  7. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104: 205–215.

    Article  CAS  Google Scholar 

  8. Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 2003; 18: 1740–1747.

    Article  CAS  Google Scholar 

  9. Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR et al. Albers–Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001; 10: 2861–2867.

    Article  CAS  Google Scholar 

  10. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 2000; 9: 2059–2063.

    Article  CAS  Google Scholar 

  11. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000; 25: 343–346.

    Article  CAS  Google Scholar 

  12. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 2001; 10: 1767–1773.

    Article  CAS  Google Scholar 

  13. Scimeca JC, Quincey D, Parrinello H, Romatet D, Grosgeorge J, Gaudray P et al. Novel mutations in the TCIRG1 gene encoding the a3 subunit of the vacuolar proton pump in patients affected by infantile malignant osteopetrosis. Hum Mutat 2003; 21: 151–157.

    Article  CAS  Google Scholar 

  14. Lemieux ME, Rebel VI, Lansdorp PM, Eaves CJ . Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow ‘switch’ cultures. Blood 1995; 86: 1339–1347.

    CAS  PubMed  Google Scholar 

  15. Quinn JM, Morfis M, Lam MH, Elliott J, Kartsogiannis V, Williams ED et al. Calcitonin receptor antibodies in the identification of osteoclasts. Bone 1999; 25: 1–8.

    Article  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  17. Osmond DG, Rolink A, Melchers F . Murine B lymphopoiesis: towards a unified model. Immunol Today 1998; 19: 65–68.

    Article  CAS  Google Scholar 

  18. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H . Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003; 18: 605–617.

    Article  CAS  Google Scholar 

  19. Lee SK, Kalinowski JF, Jastrzebski SL, Puddington L, Lorenzo JA . Interleukin-7 is a direct inhibitor of in vitro osteoclastogenesis. Endocrinology 2003; 144: 3524–3531.

    Article  CAS  Google Scholar 

  20. Green P, Marshall M, Nisbet N . A study of osteoclasts on calvaria of normal and osteopetrotic (mi/mi) mice by vital staining with acridine orange. Br J Exp Pathol 1986; 67: 85–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR . Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 1992; 90: 1622–1627.

    Article  CAS  Google Scholar 

  22. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13: 2412–2424.

    Article  CAS  Google Scholar 

  23. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315–323.

    Article  CAS  Google Scholar 

  24. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11: 3482–3496.

    Article  CAS  Google Scholar 

  25. Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G et al. Genotype–phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol 2003; 162: 57–68.

    Article  CAS  Google Scholar 

  26. Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999; 4: 353–362.

    Article  CAS  Google Scholar 

  27. Tagaya H, Kunisada T, Yamazaki H, Yamane T, Tokuhisa T, Wagner EF et al. Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood 2000; 95: 3363–3370.

    CAS  PubMed  Google Scholar 

  28. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444.

    Article  CAS  Google Scholar 

  29. Jacobsen K, Osmond DG . Microenvironmental organization and stromal cell associations of B lymphocyte precursor cells in mouse bone marrow. Eur J Immunol 1990; 20: 2395–2404.

    Article  CAS  Google Scholar 

  30. Grcevic D, Katavic V, Lukic I, Kovacic N, Lorenzo J, Marusic A . Cellular and molecular interactions between immune system and bone. Croat Med J 2001; 42: 384–392.

    CAS  PubMed  Google Scholar 

  31. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R . Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995; 181: 1519–1526.

    Article  CAS  Google Scholar 

  32. Stephan RP, Reilly CR, Witte PL . Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood 1998; 91: 75–88.

    CAS  PubMed  Google Scholar 

  33. Fleming HE, Paige CJ . Cooperation between IL-7 and the pre-B cell receptor: a key to B cell selection. Semin Immunol 2002; 14: 423–430.

    Article  CAS  Google Scholar 

  34. Godfrey DI, Zlotnik A . Control points in early T-cell development. Immunol Today 1993; 14: 547–553.

    Article  CAS  Google Scholar 

  35. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000; 408: 600–605.

    Article  CAS  Google Scholar 

  36. Utku N, Heinemann T, Tullius SG, Bulwin GC, Beinke S, Blumberg RS et al. Prevention of acute allograft rejection by antibody targeting of TIRC7, a novel T cell membrane protein. Immunity 1998; 9: 509–518.

    Article  CAS  Google Scholar 

  37. Driessen GJ, Gerritsen EJ, Fischer A, Fasth A, Hop WC, Veys P et al. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant 2003; 32: 657–663.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z M'Roueh and D Quincey for technical assistance and M Topi for animal care. We are indebted to Dr D Burke for the careful reading of this manuscript and for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G F Carle.

Additional information

This work was supported by the ‘Association Française contre les Myopathies’, the ‘Association pour la Recherche sur le Cancer’ and the ‘Fondation Singer-Polignac’

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blin-Wakkach, C., Wakkach, A., Sexton, P. et al. Hematological defects in the oc/oc mouse, a model of infantile malignant osteopetrosis. Leukemia 18, 1505–1511 (2004). https://doi.org/10.1038/sj.leu.2403449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403449

Keywords

This article is cited by

Search

Quick links