Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transforming growth factor-β signaling in normal and malignant hematopoiesis

Abstract

Transforming growth factor-β (TGF-β) is perhaps the most potent endogenous negative regulator of hematopoiesis. The intracellular signaling events mediating the effects of TGF-β are multiple, involving extensive crosstalk between Smad-dependent and MAP-kinase-dependent pathways. We are only beginning to understand the importance of the balance between these cascades as a determinant of the response to TGF-β, and have yet to determine the roles that disruption in TGF-β signaling pathways might play in leukemogenesis. This review summarizes current knowledge regarding the function of TGF-β in normal and malignant hematopoiesis. The principal observations made by gene targeting studies in mice are reviewed, with an emphasis on how a disruption of this pathway in vivo can affect blood cell development and immune homeostasis. We overview genetic alterations that lead to impaired TGF-β signaling in hematopoietic neoplasms, including the suppression of Smad-dependent transcriptional responses by oncoproteins such as Tax and Evi-1, and fusion proteins such as AML1/ETO. We also consider mutations in genes encoding components of the core cell cycle machinery, such as p27Kip1 and p15INK4A, and emphasize their impact on the ability of TGF-β to induce G1 arrest. The implications of these observations are discussed, and opinions regarding important directions for future research on TGF-β in hematopoiesis are provided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Massague J . The transforming growth factor-β family. Annu Rev Cell Biol 1990; 6: 597–641.

    CAS  PubMed  Google Scholar 

  2. Roberts AB, Sporn MB . In: Sporn MB Roberts AB (eds). Peptide Growth Factors and Their Receptors: Handbook of Experimental Pharmacology, Vol. 95. Heidelberg: Springer-Verlag, 1990, pp 421–472.

    Google Scholar 

  3. Glick A, Weinberg W, Wu IH, Quan W, Yuspa SH . Transforming growth factor β suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res 1996; 56: 3645–3650.

    CAS  PubMed  Google Scholar 

  4. Piek E, Heldin C-H, ten Dijke P . Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J 1999; 13: 2105–2124.

    CAS  PubMed  Google Scholar 

  5. Massague J . How cells read TGF-β signals. Nat Rev Mol Cell Biol 2000; 1: 169–178.

    CAS  PubMed  Google Scholar 

  6. Attisano L, Wrana JL . Signal transduction by the TGF-β superfamily. Science 2002; 296: 1646–1647.

    CAS  PubMed  Google Scholar 

  7. de Caestecker MP, Piek E, Roberts AB . Role of transforming growth factor-β signaling in cancer. J Natl Cancer Inst 2000; 92: 1388–1402.

    CAS  PubMed  Google Scholar 

  8. Hata A . TGF-β signaling and cancer. Exp Cell Res 2001; 264: 111–116.

    CAS  PubMed  Google Scholar 

  9. Wotton D, Lo RS, Lee S, Massague J . A Smad transcriptional corepressor. Cell 1999; 97: 29–39.

    CAS  PubMed  Google Scholar 

  10. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW et al. The MAD-related protein Smad7 associates with the TGF-β receptor and functions as an antagonist of TGF-β signaling. Cell 1997; 89: 1165–1173.

    CAS  PubMed  Google Scholar 

  11. Yue J, Frey R, Mulder K . Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGF-β. Oncogene 1999; 18: 2033–2037.

    CAS  PubMed  Google Scholar 

  12. Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S . ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J Biol Chem 1999; 274: 8949–8957.

    CAS  PubMed  Google Scholar 

  13. Kretzschmar M, Doody J, Timokhina I, Massague J . A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev 1999; 13: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 1995; 270: 2008–2011.

    CAS  PubMed  Google Scholar 

  15. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 1996; 272: 1179–1182.

    CAS  PubMed  Google Scholar 

  16. Hartsough MT, Mulder KM . Transforming growth factor β activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 1995; 270: 7117–7124.

    CAS  PubMed  Google Scholar 

  17. Moriguchi T, Kuroyanagi N, Yamaguchi K, Gotoh Y, Irie K, Kano T et al. A novel kinase cascade mediated by mitogen-activated protein kinase 6 and MKK3. J Biol Chem 1996; 271: 13675–13679.

    CAS  PubMed  Google Scholar 

  18. Yoshio T, Nakashima O, Inoshita S, Kuwahara M, Sasaki S, Marumo F . TGF-β-activating kinase-1 inhibits cell cycle and expression of cyclin D1 and A in LLC-PK1 cells. Kidney Int 1999; 56: 1378–1390.

    Google Scholar 

  19. Terada Y, Inoshita S, Nakashima O, Kuwahara M, Sasaki S, Marumo F . Regulation of cyclin D1 expression and cell cycle progression by mitogen-activated protein kinase cascade. Kidney Int 1999; 56: 1258–1261.

    CAS  PubMed  Google Scholar 

  20. Wang W, Zhou G, Hu M, Yao Z, Tan T . Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway by transforming growth factor β (TGF-β)-activated kinase (TAK1), a kinase mediator of TGF β signal transduction. J Biol Chem 1997; 272: 22771–22775.

    CAS  PubMed  Google Scholar 

  21. Fortunel N, Hatzfeld J, Kisselev S, Monier MN, Ducos K, Cardoso A et al. Release from quiescence of primitive human hematopoietic stem/progenitor cells by blocking their cell-surface TGF-β type II receptor in a short-term in vitro assay. Stem Cells 2000; 18: 102–111.

    CAS  PubMed  Google Scholar 

  22. Fortunel NO, Hatzfeld A, Hatzfeld JA . Transforming growth factor-β: pleiotropic role in the regulation of hematopoiesis. Blood 2000; 96: 2022–2036.

    CAS  PubMed  Google Scholar 

  23. Keller JR, McNiece IK, Sill KT, Ellingsworth LR, Quesenberry PJ, Sing GK et al. Transforming growth factor β directly regulates primitive murine hematopoietic cell proliferation. Blood 1990; 75: 596–602.

    CAS  PubMed  Google Scholar 

  24. Soma T, Yu JM, Dunbar CE . Maintenance of murine long-term repopulating stem cells in ex vivo culture is affected by modulation of transforming growth factor-β but not macrophage inflammatory protein-1α activities. Blood 1996; 87: 4561–4567.

    CAS  PubMed  Google Scholar 

  25. Keller JR, Jacobsen SE, Sill KT, Ellingsworth LR, Ruscetti FW . Stimulation of granulopoiesis by transforming growth factor β: synergy with granulocyte/macrophage-colony-stimulating factor. Proc Natl Acad Sci USA 1991; 88: 7190–7194.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacobsen SE, Ruscetti FW, Dubois CM, Lee J, Boone TC, Keller JR . Transforming growth factor β trans-modulates the expression of colony stimulating factor receptors on murine hematopoietic progenitor cell lines. Blood 1991; 77: 1706–1716.

    CAS  PubMed  Google Scholar 

  27. Sugimoto Y, Koji T, Miyoshi S . Modification of expression of stem cell factor by various cytokines. J Cell Physiol 1999; 181: 285–294.

    CAS  PubMed  Google Scholar 

  28. Sansilvestri P, Cardoso AA, Batard P, Panterne B, Hatzfeld A, Lim B et al. Early CD34high cells can be separated into KIThigh cells in which transforming growth factor-beta (TGF-β) downmodulates c-kit and KITlow cells in which anti-TGF-β upmodulates c-kit. Blood 1995; 86: 1729–1735.

    CAS  PubMed  Google Scholar 

  29. Heinrich MC, Dooley DC, Keeble WW . Transforming growth factor β1 inhibits expression of the gene products for steel factor and its receptor (c-kit). Blood 1995; 85: 1769–1780.

    CAS  PubMed  Google Scholar 

  30. Dubois CM, Ruscetti FW, Stankova J, Keller JR . Transforming growth factor-β regulates c-kit message stability and cell-surface protein expression in hematopoietic progenitors. Blood 1994; 83: 3138–3145.

    CAS  PubMed  Google Scholar 

  31. Hatzfeld J, Li ML, Brown EL, Sookdeo H, Levesque JP, O'Toole T et al. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides. J Exp Med 1991; 174: 925–929.

    CAS  PubMed  Google Scholar 

  32. Alexandrow MG, Moses HL . Transforming growth factor-β and cell cycle regulation. Cancer Res 1995; 55: 1452–1457.

    CAS  PubMed  Google Scholar 

  33. Ewen ME, Sluss HK, Whitehouse LL, Livingston DM . TGF β inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 1993; 74: 1009–1020.

    CAS  PubMed  Google Scholar 

  34. Geng Y, Weinberg RA . Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc Natl Acad Sci USA 1993; 90: 10315–10319.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Iavarone A, Massague J . Repression of the CDK activator Cdc25A and cellcycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15. Nature 1997; 387: 417–422.

    CAS  PubMed  Google Scholar 

  36. Hannon GJ, Beach D . p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 1994; 371: 257–261.

    CAS  PubMed  Google Scholar 

  37. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J . TGF-β influences Myc, Miz and Smad to control the CDK inhibitor p15Ink4b. Nat Cell Biol 2001; 3: 400–408.

    CAS  PubMed  Google Scholar 

  38. Sandhu C, Garbe J, Bhattacharya N, Daksis J, Pan CH, Yaswen P et al. Transforming growth factor β stabilizes p15INK4B protein, increases p15INK4B–cdk4 complexes, and inhibits cyclin D1–cdk4 association in human mammary epithelial cells. Mol Cell Biol 1997; 17: 2458–2467.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Reynisdottir I, Polyak K, Iavarone A, Massague J . Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev 1995; 9: 1831–1845.

    CAS  PubMed  Google Scholar 

  40. Warner BJ, Blain SW, Seoane J, Massague J . Myc downregulation by transforming growth factor β required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol 1999; 19: 5913–5922.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF . Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 1995; 92: 5545–5549.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Landesman Y, Bringold F, Milne DD, Meek DW . Modifications of p53 protein and accumulation of p21 and gadd45 mRNA in TGF-β1 growth inhibited cells. Cell Signal 1997; 9: 291–298.

    CAS  PubMed  Google Scholar 

  43. Miyazaki M, Ohashi R, Tsuji T, Mihara K, Gohda E, Namba M . Transforming growth factor-β1 stimulates or inhibits cell growth via down- or upregulation of p21/Waf1. Biochem Biophys Res Commun 1998; 246: 873–880.

    CAS  PubMed  Google Scholar 

  44. Ducos K, Panterne B, Fortunel N, Hatzfeld A, Monier MN, Hatzfeld J . p21(cip1) mRNA is controlled by endogenous transforming growth factor-β1 in quiescent human hematopoietic stem/progenitor cells. J Cell Physiol 2000; 184: 80–85.

    CAS  PubMed  Google Scholar 

  45. Claassen GF, Hann SR . A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor β-induced cell-cycle arrest. Proc Natl Acad Sci USA 2000; 97: 9498–9503.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM et al. p27Kip1 a, cyclin–Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev 1994; 8: 9–22.

    CAS  PubMed  Google Scholar 

  47. Depoortere F, Pirson I, Bartek J, Dumont JE, Roger PP . Transforming growth factor β(1) selectively inhibits the cyclic AMP-dependent proliferation of primary thyroid epithelial cells by preventing the association of cyclin D3-cdk4 with nuclear p27(kip1). Mol Biol Cell 2000; 11: 1061–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pierelli L, Marone M, Bonanno G, Mozzetti S, Rutella S, Morosetti R et al. Modulation of bcl-2 and p27 in human primitive proliferating hematopoietic progenitors by autocrine TGF β1 is a cell cycle-independent effect and influences their hematopoietic potential. Blood 2000; 95: 3001–3009.

    CAS  PubMed  Google Scholar 

  49. Dao MA, Hwa J, Nolta JA . Molecular mechanism of transforming growth factor β-mediated cell-cycle modulation in primary human CD34(+) progenitors. Blood 2002; 99: 499–506.

    CAS  PubMed  Google Scholar 

  50. Ducos K, Panterne B, Fortunel N, Hatzfeld A, Monier MN, Hatzfeld J . p21(cip1) mRNA is controlled by endogenous transforming growth factor-β1 in quiescent human hematopoietic stem/progenitor cells. J Cell Physiol 2000; 184: 80–85.

    CAS  PubMed  Google Scholar 

  51. Dao MA, Taylor N, Nolta JA . Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor β neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc Natl Acad Sci USA 1998; 95: 13006–13011.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT . Transforming growth factor-β1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21Cip1/Waf1 or p27Kip1. Blood 2001; 98: 3643–3649.

    CAS  PubMed  Google Scholar 

  53. Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T et al. TGF-β1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci 2000; 113: 383–390.

    CAS  PubMed  Google Scholar 

  54. Marone M, Scambia G, Bonanno G, Rutella S, de Ritis D, Guidi F et al. Transforming growth factor-β1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects. Leukemia 2002; 16: 94–105.

    CAS  PubMed  Google Scholar 

  55. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993; 90: 770–774.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992; 359: 693–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah AH, Tabayoyong WB, Kimm SY, Kim SJ, Van Parijs L, Lee C . Reconstitution of lethally irradiated adult mice with dominant negative TGF-β type II receptor-transduced bone marrow leads to myeloid expansion and inflammatory disease. J Immunol 2002; 169: 3485–3491.

    CAS  PubMed  Google Scholar 

  58. Leveen P, Larsson J, Ehinger M, Cilio CM, Sundler M, Sjostrand LJ et al. Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood 2002; 100: 560–568.

    CAS  PubMed  Google Scholar 

  59. Lucas PJ, Kim SJ, Melby SJ, Gress RE . Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor β II receptor. J Exp Med 2000; 191: 1187–1196.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gorelik L, Flavell RA . Abrogation of TGF-β signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171–181.

    CAS  PubMed  Google Scholar 

  61. Piao YF, Ychijo H, Miyagawa K, Ohashi H, Takaku F, Miyazono K . Latent form of transforming growthfactor-β1 acts as a potent growth inhibitor of a human erythroleukemia cell line. Biochem Biophys Res Commun 1990; 167: 27–32.

    CAS  PubMed  Google Scholar 

  62. Chen LL, Dean A, Jenkinson T, Mendelson J . Effect of transforming growthfactor-β1 on proliferation and induction of hemoglobin accumulation in K-562 cells. Blood 1989; 74: 2368–2375.

    CAS  PubMed  Google Scholar 

  63. Piacibello W, Severino A, Stacchini A, Aglietta M . Differential effects of transforming growthfactor-β1 on the proliferation of human lymphoid and myeloid leukemia cells. Haematologica 1991; 76: 460–466.

    CAS  PubMed  Google Scholar 

  64. Schieman WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF . A deletion in the gene for transforming growth factor β type I receptor abolishes growth regulation by transforming growth factor beta in cutaneous T cell lymphoma. Blood 1999; 94: 2854–2861.

    Google Scholar 

  65. Knaus PI, Lindemann D, DeCoteau JF, Perlman R, Yankelev H, Hille M et al. A dominant inhibitory mutant of the type II transforming growth factor β receptor in the malignant progression of a cutaneous T cell lymphoma. Mol Cell Biol 1996; 16: 3480–3489.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Inman GJ, Allday, MJ . Resistance to TGF-β1 correlates with a reduction of TGF-β type II receptor expression in Burkitt's lymphoma and Epstein–Barr virus-transformed B lymphoblastoid cell lines. J Gen Virol 2000; 81: 1567–1578.

    CAS  PubMed  Google Scholar 

  67. Scott S, Kimura T, Ichinohasama R, Bergen S, Magliocco A, Reimer C et al. Microsatellite mutations of transforming growth factor-β receptor type II and caspase-5 occur in human precursor T-cell lymphoblastic lymphomas/leukemias in vivo but are not associated with hMSH2 or hMLH1 promoter methylation. Leukemia Res 2003; 27: 23–34.

    CAS  Google Scholar 

  68. Molenaar JJ, Gerard B, Chambon-Pautas C, Cave H, Duval M, Vilmer E et al. Microsatellite instability and frameshift mutations in BAX and transforming growth factor-β RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines. Blood 1998; 92: 230–233.

    CAS  PubMed  Google Scholar 

  69. Rooke HM, Vitas MR, Crosier PS, Crosier KE . The TGF-β type II receptor in chronic myeloid leukemia: analysis of microsatellite regions and gene expression. Leukemia 1999; 13: 535–541.

    CAS  PubMed  Google Scholar 

  70. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Maki K, Ogawa S et al. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Oncogene 2001; 20: 88–96.

    CAS  PubMed  Google Scholar 

  71. Giles RH, Peters DJ, Breuning MH . Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 1998; 14: 178–183.

    CAS  PubMed  Google Scholar 

  72. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    CAS  PubMed  Google Scholar 

  73. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997; 15: 303–306.

    CAS  PubMed  Google Scholar 

  74. Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J et al. Inhibition of the transforming growth factor β1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem 2000; 275: 40282–40287.

    CAS  PubMed  Google Scholar 

  75. Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K et al. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol 1998; 18: 846–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H . The corepressor CtBP interacts with Evi-1 to repress transforming growth factor β signaling. Blood 2001; 97: 2815–2822.

    CAS  PubMed  Google Scholar 

  77. Ogawa S, Mitani K, Kurokawa M, Matsuo Y, Minowada J, Inazawa J et al. Abnormal expression of Evi-1 gene in human leukemias. Hum Cell 1996; 9: 323–332.

    CAS  PubMed  Google Scholar 

  78. Nucifora G . The EVI1 gene in myeloid leukemia. Leukemia 1997; 11: 2022–2031.

    CAS  PubMed  Google Scholar 

  79. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H . The t(3; 21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-β-mediated growth inhibition of myeloid cells. Blood 1998; 92: 4003–4012.

    CAS  PubMed  Google Scholar 

  80. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S et al. The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 1998; 394: 92–96.

    CAS  PubMed  Google Scholar 

  81. Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K et al. c-myc is a downstream target of the Smad pathway. J Biol Chem 2002; 277: 854–861.

    CAS  PubMed  Google Scholar 

  82. Massagué J, Blain SW, Lo RS . TGF-β signaling in growth control, cancer, and heritable disorders. Cell 2000; 103: 295–309.

    PubMed  Google Scholar 

  83. Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM et al. TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 1990; 61: 777–785.

    CAS  PubMed  Google Scholar 

  84. Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA . Interactioni of the Ski oncoprotein with Smad3 regulates TGF-β signaling. Mol Cell 1999; 4: 499–509.

    CAS  PubMed  Google Scholar 

  85. Kretzschmar M, Doody J, Timokhina I, Massagué J . A mechanism of repression of TGF-β/Smad signaling by oncogenic. Ras Gene Dev 1999; 13: 804–816.

    CAS  PubMed  Google Scholar 

  86. Sasaki T, Suzuki H, Yagi K, Furuhashi M, Yao R, Susa S et al. Lymphoid enhancer factor 1 makes cells resistant to transforming growth factor β-induced repression of c-myc. Cancer Res 2003; 63: 801–806.

    CAS  PubMed  Google Scholar 

  87. Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J et al. β-Catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 2001; 28: 52–57.

    Google Scholar 

  88. Komuro H, Valentine MB, Rubnitz JE, Saito M, Raimondi SC, Carroll AJ et al. p27Kip1 deletions in childhood acute lymphoblastic leukemia. Neoplasia 1999; 1: 253–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Takeuchi C, Takeuchi S, Ikezoe T, Bartram CR, Taguchi H, Koeffler HP, Germline mutation of the p27Kip1 gene in childhood acute lymphoblastic leukemia. Leukemia 2002; 16: 956–958.

    CAS  PubMed  Google Scholar 

  90. Morosetti R, Kawamata N, Gomart AF, Miller CW, Hatta Y, Hirama T et al. Alterations of p27Kip1 gene in non-Hodgkin's lymphomas and adult T cell leukemia/lymphoma. Blood 1995; 86: 1924–1930.

    CAS  PubMed  Google Scholar 

  91. Kruz U, Ganser A, Koeffler HP . Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 2002; 21: 3475–3495.

    Google Scholar 

  92. Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H . Adult T cell leukemia: clinical and hematologic features of 16 cases. Blood 1977; 50: 481–492.

    CAS  PubMed  Google Scholar 

  93. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC . Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 1980; 77: 7415–7419.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoshida M, Miyoshi I, Hinuma Y . Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA 1982; 79: 2031–2035.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nagashima K, Yoshida M, Seiki M . A single species of pX mRNA of human T-cell leukemia virus type I encodes trans-activator p40x and two other phosphoproteins. J Virol 1986; 60: 394–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fujii M, Niki T, Mori T, Matsuda T, Matsui M, Nomura N et al. HTLV-1 Tax induces expression of various immediate early serum responsive genes. Oncogene 1991; 6: 1023–1029.

    CAS  PubMed  Google Scholar 

  97. Nagata K, Ohtani K, Nakamura M, Sugamura K . Activation of endogenous c-fos proto-oncogene expression by human T-cell leukemia virus type I-encoded p40tax protein in the human T-cell, line Jurkat. J Virol 1989; 63: 3220–3226.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao LJ, Giam CZ . Human T-cell lymphotropic virus type I (HTLV-I) transcriptional activator, Tax, enhances CREB binding to HTLV-I 21-base-pair repeats by protein-protein interaction. Proc Natl Acad Sci USA 1992; 89: 7070–7074.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fujii M, Tsuchiya H, Chuhjo T, Akizawa T, Seiki M . Interaction of HTLV-1 Tax1 with p67SRF causes the aberrant induction of cellular immediate early genes through CArG boxes. Genes Dev 1992; 6: 2066–2076.

    CAS  PubMed  Google Scholar 

  100. Low KG, Dorner LF, Fernando DB, Grossman J, Jeang KT, Comb MJ . Human T-cell leukemia virus type 1 Tax releases cell cycle arrest induced by p16INK4a. J Virol 1997; 71: 1956–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hollsberg P, Ausubel LJ, Hafler DA . Human T cell lymphotropic virus type I-induced T cell activation. Resistance to TGF-β1-induced suppression. J Immunol 1994; 153: 566–573.

    CAS  PubMed  Google Scholar 

  102. Mori N, Morishita M, Tsukazaki T, Giam CZ, Kumatori A, Tanaka Y et al. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor β signaling through interaction with CREB-binding protein/p300. Blood 2001; 97: 2137–2144.

    CAS  PubMed  Google Scholar 

  103. Lee DK, Kim BC, Brady JN, Jeang KT, Kim SJ . Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-beta signaling by blocking the association of Smad proteins with Smad-binding element. J Biol Chem 2002; 277: 33766–33775.

    CAS  PubMed  Google Scholar 

  104. Arnulf B, Villemain A, Nicot C, Mordelet E, Charneau P, Kersual J et al. Human T-cell lymphotropic virus oncoprotein Tax represses TGF-β1 signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis. Blood 2002; 100: 4129–4138.

    CAS  PubMed  Google Scholar 

  105. Kim SJ, Kehrl JH, Burton J, Tendler CL, Jeang KT, Danielpour D et al. Transactivation of the transforming growth factor β1 (TGF-β1) gene by human T lymphotropic virus type 1 tax: a potential mechanism for the increased production of TGF-β1 in adult T cell leukemia. J Exp Med 1990; 172: 121–129.

    CAS  PubMed  Google Scholar 

  106. Kim SJ, Winokur TS, Lee HD, Danielpour D, Kim KY, Geiser AG et al. Overexpression of transforming growth factor-β in transgenic mice carrying the human T-cell lymphotropic virus type I tax gene. Mol Cell Biol 1991; 11: 5222–5228.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Letterio, J. Transforming growth factor-β signaling in normal and malignant hematopoiesis. Leukemia 17, 1731–1737 (2003). https://doi.org/10.1038/sj.leu.2403069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403069

Keywords

This article is cited by

Search

Quick links