Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells

Abstract

It is now well established that the reduced capacity of tumor cells of undergoing cell death through apoptosis plays a key role both in the pathogenesis of cancer and in therapeutic treatment failure. Indeed, tumor cells frequently display multiple alterations in signal transduction pathways leading to either cell survival or apoptosis. In mammals, the pathway based on phosphoinositide 3-kinase (PI3K)/Akt conveys survival signals of extreme importance and its downregulation, by means of pharmacological inhibitors of PI3K, considerably lowers resistance to various types of therapy in solid tumors. We recently described an HL60 leukemia cell clone (HL60AR cells) with a constitutively active PI3K/Akt pathway. These cells were resistant to multiple chemotherapeutic drugs, all-trans-retinoic acid (ATRA), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Treatment with two pharmacological inhibitors of PI3K, wortmannin and Ly294002, restored sensitivity of HL60AR cells to the aforementioned treatments. However, these inhibitors have some drawbacks that may severely limit or impede their clinical use. Here, we have tested whether or not a new selective Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (Akt inhibitor), was as effective as Ly294002 in lowering the sensitivity threshold of HL60 cells to chemotherapeutic drugs, TRAIL, ATRA, and ionizing radiation. Our findings demonstrate that, at a concentration which does not affect PI3K activity, the Akt inhibitor markedly reduced resistance of HL60AR cells to etoposide, cytarabine, TRAIL, ATRA, and ionizing radiation. This effect was likely achieved through downregulation of expression of antiapoptotic proteins such as c-IAP1, c-IAP2, cFLIPL, and of Bad phosphorylation on Ser 136. The Akt inhibitor did not influence PTEN activity. At variance with Ly294002, the Akt inhibitor did not negatively affect phosphorylation of protein kinase C-ζ and it was less effective in downregulating p70S6 kinase (p70S6K) activity. The Akt inhibitor increased sensitivity to apoptotic inducers of K562 and U937, but not of MOLT-4, leukemia cells. Overall, our results indicate that selective Akt pharmacological inhibitors might be used in the future for enhancing the sensitivity of leukemia cells to therapeutic treatments that induce apoptosis or for overcoming resistance to these treatments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Pui C-H . Acute lymphoblastic leukemia in children. Curr Opin Oncol 2000; 12: 3–12.

    Article  CAS  PubMed  Google Scholar 

  2. Tzortzatou-Stathopoulou F, Papadopoulou AL, Moschovi M, Botsonis A, Tsangaris GT . Low relapse rate in children with acute lymphoblastic leukemia after risk-directed therapy. J Pediatr Hematol Oncol 2001; 23: 591–597.

    Article  CAS  PubMed  Google Scholar 

  3. Cripe LD, Hinton S . Curr Treat Options Oncol 2000; 1: 9–17.

  4. Kaufmann SH, Earnshaw WC . Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000; 256: 42–49.

    Article  CAS  PubMed  Google Scholar 

  5. Fenaux P, Chomienne C, Degos L . Acute promyelocytic leukemia: from genetics to treatment. Semin Oncol 1997; 24: 92–102.

    CAS  PubMed  Google Scholar 

  6. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemayer H . Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 2001; 7: 680–686.

    Article  CAS  PubMed  Google Scholar 

  7. O'Gorman DM, Cotter TG . Molecular signals in anti-apoptotic survival pathways. Leukemia 2001; 15: 21–34.

    Article  CAS  PubMed  Google Scholar 

  8. Gallagher RA . Retinoic acid resistance in acute promyelocytic leukemia. Leukemia 2002; 16: 1940–1958.

    Article  CAS  PubMed  Google Scholar 

  9. Makin G, Dive C . Apoptosis and cancer chemotherapy. Trends Cell Biol 2001; 11S: S22–S26.

    Article  Google Scholar 

  10. Brazil DP, Hemmings BA . Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001; 26: 657–664.

    Article  CAS  PubMed  Google Scholar 

  11. Cantrell DA . Phosphoinositide 3-kinase signalling pathways. J Cell Sci 2001; 114: 1439–1445.

    CAS  PubMed  Google Scholar 

  12. Lawlor MA, Alessi DR . PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001; 114: 2903–2910.

    CAS  PubMed  Google Scholar 

  13. Nicholson KM, Anderson NG . The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    Article  CAS  PubMed  Google Scholar 

  14. Ng SSW, Tsao MS, Chow S, Hedley DW . Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res 2000; 60: 5451–5455.

    CAS  PubMed  Google Scholar 

  15. Brognard J, Clark AS, Ni Y, Dennis PA . Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001; 61: 3986–3997.

    CAS  PubMed  Google Scholar 

  16. Chen X, Thakkar H, Tyan F, Gim S, Robinson H, Lee C et al. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 2001; 20: 6073–6083.

    Article  CAS  PubMed  Google Scholar 

  17. O'Gorman DM, McKenna SL, McGahon AJ, Knox KA, Cotter TG . Sensitisation of HL60 human leukaemic cells to cyotoxic drug induced apoptosis by inhibition of PI3-kinase survival signal. Leukemia 2000; 14: 602–611.

    Article  CAS  PubMed  Google Scholar 

  18. Cataldi A, Zauli G, Di Pietro R, Castorina S, Rana R . Involvement of the pathway phosphatidylinositol-3-kinase/AKT-1 in the establishment of the survival response to ionizing radiation. Cell Signal 2001; 13: 369–375.

    Article  CAS  PubMed  Google Scholar 

  19. Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D et al. Activation of NF-κB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002; 21: 5673–5683.

    Article  CAS  PubMed  Google Scholar 

  20. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001; 70: 535–602.

    Article  CAS  PubMed  Google Scholar 

  21. Saltiel AR, Pesin JE . Insulin signaling pathways in time and space. Trends Cell Biol 2002; 12: 65–71.

    Article  CAS  PubMed  Google Scholar 

  22. Zick Y . Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol 2002; 12: 437–441.

    Google Scholar 

  23. Hu Y, Qiao L, Wang S, Rong S, Meuill et EJ, Berggren M et al. 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate block PI3-K, Akt and cancer cell growth. J Med Chem 2000; 43: 3045–3051.

    Article  CAS  PubMed  Google Scholar 

  24. Tazzari PL, Cappellini A, Bortul R, Ricci F, Billi AM, Tabellini G et al. Flow cytometric detection of total and serine 473 phosphorylated Akt. J Cell Biochem 2002; 86: 704–715.

    Article  CAS  PubMed  Google Scholar 

  25. Bortul R, Tazzari PL, Cappellini A, Tabellini G, Billi AM, Bareggi R et al. Constitutively active AKT1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-κB activation and c-FLIPL up-regulation. Leukemia 2003; 17: 379–389.

    Article  CAS  PubMed  Google Scholar 

  26. Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G et al. The phosphoinositide 3-kinase/AKTR1 pathway involvement in multidrug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res 2003; 1: 234–246.

    CAS  PubMed  Google Scholar 

  27. Kozikowski AP, Kiddle JJ, Frew T, Berggren M, Powis G . Synthesis and biology of 1D-3-deoxyphosphatidylinositol-3-phosphate: a putative antimetabolite of phosphatidylinositol-3-phosphate and an inhibitor of cancer cell colony formation. J Med Chem 1995; 38: 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  28. Fang X, Yu S, Eder A, Mao M, Bast Jr RC, Boyd D et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 1999; 18: 6635–6640.

    Article  CAS  PubMed  Google Scholar 

  29. Hengartner G . The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    Article  CAS  PubMed  Google Scholar 

  30. Simpsons L, Parsons R . PTEN: life as a tumor suppressor. Exp Cell Res 2001; 264: 29–41.

    Article  Google Scholar 

  31. Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ . Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 1998; 281: 2042–2045.

    Article  CAS  PubMed  Google Scholar 

  32. Chou MM, Hou W, Johnson J, Graham LK, Lee MH, Chen CS et al. Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr Biol 1998; 8: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  33. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD . Cellular function of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615–675.

    Article  CAS  PubMed  Google Scholar 

  34. Kim M-S, Lim W-K, Cha J-G, An N-H, Yoo S-J, Park J-H et al. The activation of PI 3-K and PKC ζ in PMA-induced differentiation of HL-60 cells. Cancer Lett 2001; 171: 79–85.

    Article  CAS  PubMed  Google Scholar 

  35. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ . P70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 2001; 98: 9666–9670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pullen N, Thomas G et al. The modular phosphorylation and activation of p70S6K. FEBS Lett 1997; 410: 78–82.

    Article  CAS  PubMed  Google Scholar 

  37. Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA et al. Phosphorylation and activation of p70S6K by PDK1. Science 1998; 279: 673–674.

    Article  Google Scholar 

  38. Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J . 3-phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70S6 kinase in vivo and in vitro. Curr Biol 1998; 8: 69–81.

    Article  CAS  PubMed  Google Scholar 

  39. Skorski T, Kanakaraj, Nieborowska-Skorska M, Ratjczak MZ, Wen R-C, Zon G et al. Phosphatidylinositol 3-kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995; 86: 726–736.

    CAS  PubMed  Google Scholar 

  40. Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T . Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of ST571. Oncogene 2002; 21: 5868–5876.

    Article  CAS  PubMed  Google Scholar 

  41. Riordan FA, Bravery CA, Mengubas K, Ray N, Borthwick NJ, Akbar AN et al. Herbimycin A accelerates the induction of apoptosis following etoposide treatment or γ-irradiation of bcr-abl-positive leukaemia cells. Oncogene 1999; 16: 1533–1542.

    Article  Google Scholar 

  42. Higginbottom K, Cummings M, Newland AC, Allen PD . Etoposide-mediated deregulation of the G2M checkpoint in myeloid leukaemic cell lines results in loss of cell survival. Br J Haematol 2002; 119: 956–964.

    Article  CAS  PubMed  Google Scholar 

  43. Hietakangas V, Poukkula M, Heiskanen KM, Karvinen JT, Sistonen L, Eriksson JE . Erythroid differentiation sensitizes K562 leukemia cells tp TRAIL-induced apoptosis by down-regulation of c-FLIP. Mol Cell Biol 2003; 23: 1278–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Plo I, Bettaïeb A, Payrastre B, Mansat-De Mas V, Bordier C, Rousse A et al. The phosphoinositide 3-kinase/Akt pathway is activated by daunorubicin in human acute myeloid leukaemia cell lines. FEBS Lett 1999; 452: 150–154.

    Article  CAS  PubMed  Google Scholar 

  45. Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG . Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol 2002; 169: 5441–5450.

    Article  CAS  PubMed  Google Scholar 

  46. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukaemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  47. Brognard J, Clark AS, Ni Y, Dennis PA . Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001; 61: 3986–3997.

    CAS  PubMed  Google Scholar 

  48. Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001; 98: 795–804.

    Article  CAS  PubMed  Google Scholar 

  49. Tari AM, Lim SJ, Hung M, Esteva FJ, Lopez-Berestein G . Her2/neu induces all-trans retinoic acid (ATRA) resistance in breast cancer cells. Oncogene 2002; 21: 5224–5232.

    Article  CAS  PubMed  Google Scholar 

  50. Pene F, Claessens YE, Muller O, Viguie F, Mayeux P, Dreyfus F et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase in the proliferation and apoptosis in multiple myeloma. Oncogene 2002; 21: 6587–6597.

    Article  CAS  PubMed  Google Scholar 

  51. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 1999; 8: 185–193.

    Article  CAS  PubMed  Google Scholar 

  52. Aggerholm A, Grønbæk K, Guldberg P, Hokland P . Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorder. Eur J Haematol 2000; 65: 109–113.

    Article  CAS  PubMed  Google Scholar 

  53. Liu TC, Lin PM, Chang JG, Lee JP, Chen TP, Lin SF . Mutational analysis of PTEN/MMAC1 in acute myeloid leukemia. Am J Hematol 2000; 63: 170–175.

    Article  CAS  PubMed  Google Scholar 

  54. Yamada KM, Araki M . Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114: 2375–2382.

    CAS  PubMed  Google Scholar 

  55. Aksoy IA, Ramsey MJ, Fruman DA, Aksoy S, Cantley LC, Tucker JD et al. Mouse phosphoinositide 3-kinase p110α gene: cloning, structural organization, and localization to chromosome 3 band B. Biochem Biophys Res Commun 1999; 262: 438–442.

    Article  CAS  PubMed  Google Scholar 

  56. Testoni N, Borsaru G, Martinelli G, Carboni C, Ruggeri D, Ottavian E et al. 3q21 and 3q26 cytogenetic abnormalities in acute myeloblastic leukemia: biological and clinical features. Haematologica 1999; 84: 690–694.

    CAS  PubMed  Google Scholar 

  57. Luo J-M, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. Possibile dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17: 1–8.

    Article  CAS  PubMed  Google Scholar 

  58. Krystal G, Damen JE, Helgason CD, Huber M, Hughes MR, Kalesnikoff J et al. SHIPs ahoy. Int J Biochem Cell Biol 1999; 31: 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  59. Coggeshall KM, Nakamura K, Phee H . How protein phosphatases work? Mol Immunol 2002; 39: 521–529.

    Article  CAS  PubMed  Google Scholar 

  60. Scheid MP, Huber M, Damen JE, Hughes M, Kang V, Neilsen P et al. Phosphatidylinositol (3,4,5)P3 is essential but not sufficient for protein kinase B activation: phosphatidylinositol (3,4)P2 is required for PKB phosphorylation at Ser-473. J Biol Chem 2002; 277: 9027–9035.

    Article  CAS  PubMed  Google Scholar 

  61. Zittoun RA, Mandelli F, Willemze R, De Witte T, Labar B, Resegoti L et al. Autologous or allogeneic bone marrow transplantations compared with intensive chemotherapy in acute myelogenous leukemia. N Engl J Med 1995; 332: 217–223.

    Article  CAS  PubMed  Google Scholar 

  62. Du L, Smolewski P, Bedner E, Traganos F, Darzynkiewicz Z . Selective protection of mitogenicaly stimulated human lymphocytes but not leukemic cells from cytosine arabinoside-induced apoptosis by LY294002, a phosphoinositol-3 kinase inhibitor. Int J Oncol 2001; 19: 811–819.

    CAS  PubMed  Google Scholar 

  63. Kozikowski AP, Sun H, Brognard J, Dennis PA . Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. J Am Chem Soc 203; 125: 1144–1145.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from AIRC, Italian MIUR Cofin 2001 and 2002, FIRB 2001, Selected Topics Research Fund from Bologna University, CARISBO Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martelli, A., Tazzari, P., Tabellini, G. et al. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 17, 1794–1805 (2003). https://doi.org/10.1038/sj.leu.2403044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403044

Keywords

This article is cited by

Search

Quick links