Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Myeloma

Inactivation of the E3/LAPTm5 gene by chromosomal rearrangement and DNA methylation in human multiple myeloma

Abstract

Chromosomal band 1p34–36 is a commonly rearranged locus in many types of cancers. We cloned the breakpoint region of a chromosomal translocation, t(1;14)(p34;q32), found in the human multiple myeloma (MM) cell line, ODA. This rearrangement occurred between the nearby switch region of the immunoglobulin heavy chain (IgH) gene (Sγ3) at 14q32 and the first intron of the human retinoic acid-inducible E3 protein (E3)/lysosome-associated protein, transmembrane-5 (LAPTm5) gene at the 1p34 locus. Consequently, the E3 gene, which is a hematopoietic cell-specific transcript induced by retinoic acid and located at the rearranged allele, was interrupted within its coding region and was not expressed in the ODA cell line in spite of the other allele still being intact. The expression derived from the remaining intact allele in ODA cells was silenced by DNA methylation at sequences within the first intron around a GC-rich EagI site. Interestingly, the silenced expression of E3 mRNA due to DNA methylation of intron 1 sequences was frequently encountered in MM cells [6/10 (60%) of MM cell lines tested], while E3 is expressed in normal plasma cells and in most other hematopoietic cell lines including those of B-cell lineage. Thus, as the E3 protein has been suggested to be involved in cellular differentiation and apoptotic pathways in certain cell types, our results suggest that loss of E3 gene expression might be a crucial event during the progression of human MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 1
Figure 2
Figure 3
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wlodarskia I, Mecucci C, Stul M, Michaux L, Pittaluga S, Hernandez JM et al. Fluorescence in situ hybridization identifies new chromosomal changes involving 3q27 in non-Hodgkin's lymphomas with BCL6/LAZ3 rearrangement. Genes Chromosom Cancer 1995; 1: 1–7.

    Article  Google Scholar 

  2. Dierlamm J, Pittaluga S, Wlodarska I, Stul M, Thomas J, Boogaerts M et al. Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphologic features. Blood 1996; 87: 299–307.

    CAS  PubMed  Google Scholar 

  3. Emi M, Yoshimoto M, Sato T, Matsumoto S, Utada Y, Ito I et al. Allelic loss at 1p34, 13q12, 17p13.3, and 17q21.1 correlates with poor postoperative prognosis in breast cancer. Genes Chromosom Cancer 1999; 26: 134–141.

    Article  CAS  PubMed  Google Scholar 

  4. Kim GJ, Park SY, Kim H, Chun YH, Park SH . Chromosomal aberrations in neuroblastoma cell lines identified by cross species color banding and chromosome painting. Cancer Genet Cytogenet 2001; 129: 10–16.

    Article  CAS  PubMed  Google Scholar 

  5. Derre J, Lagace R, Nicolas A, Mairal A, Chibon F, Coindre JM et al. Leiomyosarcomas and most malignant fibrous histiocytomas share very similar comparative genomic hybridization imbalances: an analysis of a series of 27 leiomyosarcomas. Lab Invest 2001; 81: 211–215

    Article  CAS  PubMed  Google Scholar 

  6. Burnett RC, Thirman MJ, Rowley JD, Diaz MO . Molecular analysis of the T-cell acute lymphoblastic leukemia-associated t(1;7) (p34;q34) that fuses LCK and TCRB. Blood 1994; 84: 1232–1236.

    CAS  PubMed  Google Scholar 

  7. Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM . Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996; 88: 674–681.

    CAS  PubMed  Google Scholar 

  8. Iida S, Rao PH, Butler M, Corradini P, Boccadoro M, Klein B et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet 1997; 17: 226–230.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida S, Nakazawa N, Iida S, Hayami Y, Sato S, Wakita A et al. Detection of MUM1/IRF4-IgH fusion in multiple myeloma. Leukemia 1999; 13: 1812–1816.

    Article  CAS  PubMed  Google Scholar 

  10. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM, Bergsagel PL . Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997; 16: 260–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, Brents LA, Chen T et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998; 91: 4457–4463.

    CAS  PubMed  Google Scholar 

  12. Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R, Intergroupe Francophone du Myelome. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 2001; 98: 2853–2855.

    Article  Google Scholar 

  13. Hanamura I, Iida S, Akano Y, Hayami Y, Kato M, Miura K et al. Ectopic expression of MAFB gene in human myeloma cells carrying (14;20)(q32;q11) chromosomal translocations. Jpn J Cancer Res 2001; 92: 638–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iida S, Hanamura I, Suzuki T, Kamiya T, Kato M, Hayami Y et al. A novel human multiple myeloma-derived cell line, NCU-MM-1, carrying t(2;11)(q11;q23) and t(8;22)(q24;q11) chromosomal translocations with overexpression of c-Myc protein. Int J Hematol 2000; 72: 85–91.

    CAS  PubMed  Google Scholar 

  15. Seto M, Yamamoto K, Iida S, Akao Y, Utsumi KR, Kubonishi I et al. Gene rearrangement and overexpression of PRAD1 in lymphoid malignancy with t(11;14)(q13;q32) translocation. Oncogene 1992; 7: 1401–1406.

    CAS  PubMed  Google Scholar 

  16. Tagawa S, Doi S, Taniwaki M, Abe T, Kanayama Y, Nojima J et al. Amylase-producing plasmacytoma cell lines, AD3 and FR4, with der(14)t(8;14) and dic(8)t(1;8) established from ascites. Leukemia 1990; 4: 600–605.

    CAS  PubMed  Google Scholar 

  17. Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, Jourdan M et al. Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 1994; 83: 3654–3663.

    CAS  PubMed  Google Scholar 

  18. Tsuboi K, Iida S, Inagaki H, Kato M, Hayami Y, Hanamura I et al. MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies. Leukemia 2000; 14: 449–456.

    Article  CAS  PubMed  Google Scholar 

  19. Iida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 1996; 88: 4110–4117.

    CAS  PubMed  Google Scholar 

  20. Taniwaki M, Nishida K, Ueda Y, Misawa S, Nagai M, Tagawa S et al. Interphase and metaphase detection of the breakpoint of 14q32 translocations in B-cell malignancies by double-color fluorescence in situ hybridization. Blood 1995; 85: 3223–3228.

    CAS  PubMed  Google Scholar 

  21. Adra CN, Zhu S, Ko JL, Guillemot JC, Cuervo AM, Kobayashi H et al. LAPTM5: a novel lysosomal-associated multispanning membrane protein preferentially expressed in hematopoietic cells. Genomics 1996; 35: 328–337.

    Article  CAS  PubMed  Google Scholar 

  22. Scott LM, Mueller L, Collins SJ . E3, a hematopoietic-specific transcript directly regulated by the retinoic acid receptor alpha. Blood 1996; 88: 2517–2530.

    CAS  PubMed  Google Scholar 

  23. Origasa M, Tanaka S, Suzuki K, Tone S, Lim B, Koike T . Activation of a novel microglial gene encoding a lysosomal membrane protein in response to neuronal apoptosis. Mol Brain Res 2001; 88: 1–13.

    Article  CAS  PubMed  Google Scholar 

  24. Hangaishi A, Ogawa S, Imamura N, Miyawaki S, Miura Y, Uike N et al. Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53, and Rb genes in primary lymphoid malignancies. Blood 1996; 87: 4949–4958.

    CAS  PubMed  Google Scholar 

  25. Roman-Gomez J, Castillejo JA, Jimenez A, Gonzalez MG, Moreno F, Rodriguez MDJ et al. 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 2002; 99: 2291–2296.

    Article  CAS  PubMed  Google Scholar 

  26. Ng MHL, Chung YF, Lo KW, Wickham NWR, Lee JCK, Huang DP . Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood 1997; 89: 2500–2506.

    CAS  PubMed  Google Scholar 

  27. Hallek M, Bergsagel PL, Anderson KC . Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21.

    CAS  PubMed  Google Scholar 

  28. Dave BJ, Hess MM, Pickering DL, Zaleski DH, Pfeifer AL, Weisenburger DD et al. Rearrangements of chromosome band Ip36 in non-Hodgkin's lymphoma. Clin Cancer Res 1999; 5: 1401–1409.

    CAS  PubMed  Google Scholar 

  29. Duro D, Bernard O, Della Valle V, Leblanc T, Berger R, Larsen CJ . Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type. Cancer Res 1996; 56: 848–854.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms C Fukuyama and C Nakagawa for their skillful technical assistance. This work was supported in part by a Grant for S Iida and R Ueda from the Ministry of Education, Science, Sports and Culture, Japan and a Research Grant of the Princess Takamatsu Cancer Research Fund for S Iida.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayami, Y., Iida, S., Nakazawa, N. et al. Inactivation of the E3/LAPTm5 gene by chromosomal rearrangement and DNA methylation in human multiple myeloma. Leukemia 17, 1650–1657 (2003). https://doi.org/10.1038/sj.leu.2403026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403026

Keywords

This article is cited by

Search

Quick links