Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia

Abstract

Glucocorticoids (GC) are probably the most important drugs in the treatment of ALL. Despite the extensive use of GC for many years, little is known about the molecular mechanisms of sensitivity and resistance. This review summarizes the knowledge on GC cytotoxicity in leukemia. The relevance of polymorphisms, splice variants and the number and regulation of the GC receptor are discussed. The role of multidrug resistance proteins, glutathione and glutathione S-transferase is evaluated, as well as the influence of the different heat-shock chaperone (hsp 90 and 70) and co-chaperone proteins (BAG-1 and others) which form a complex together with the GC receptor. Finally, the transactivation and transrepression (via NF-κB and AP-1 binding) of a wide range of genes (like c-myc) which initiates the final apoptosis pathway are discussed and suggestions for future directions of research in ALL patients are given.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Reiter, A, Schrappe, M, Ludwig, WD, Hiddemann, W, Sauter, S, Henze, G, Zimmermann, M, Lampert, F, Havers, W, Niethammer, D, Odenwald, E, Ritter, J, Mann, G, Welte, K, Gadner, H & Riehm, H Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood, (1994). 84, 3122–3133.

    CAS  PubMed  Google Scholar 

  2. Riehm, H, Reiter, A, Schrappe, M, Berthold, F, Dopfer, R, Gerein, V, Ludwig, R, Ritter, J, Stollmann, B & Henze, G Die corticosteroid-abhangige dezemierung der leukamiezellzahl im blut als prognose-faktor bei der akuten lymphoblastischen leukemie im kindesalter (therapiestudie ALL-BFM 83). Klin Padiatr, (1986). 199, 151–160.

    Google Scholar 

  3. Arico, M, Basso, G, Mandelli, F, Rizzari, C, Colella, R, Barisone, E, Zanesco, L, Rondelli, R, Pession, A & Masera, G Good steroid response in vivo predicts a favorable outcome in children with T-cell acute lymphoblastic leukemia. The Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP). Cancer, (1995). 75, 1684–1693.

    CAS  PubMed  Google Scholar 

  4. Dordelmann, M, Reiter, A, Borkhardt, A, Ludwig, WD, Gotz, N, Viehmann, S, Gadner, H, Riehm, H & Schrappe, M Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood, (1999). 94, 1209–1217.

    CAS  PubMed  Google Scholar 

  5. Schrappe, M, Arico, M, Harbott, J, Biondi, A, Zimmermann, M, Conter, V, Reiter, A, Valsecchi, MG, Gadner, H, Basso, G, Bartram, CR, Lampert, F, Riehm, H & Masera, G Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood, (1998). 92, 2730–2741.

    CAS  PubMed  Google Scholar 

  6. Pieters, R, Huismans, DR, Loonen, AH, Hahlen, K, van der Does-van den Berg, A, van Wering, ER & Veerman, AJ Relation of cellular drug resistance to long-term clinical outcome in childhood acute lymphoblastic leukaemia. Lancet, (1991). 338, 399–403.

    CAS  PubMed  Google Scholar 

  7. Kaspers, GJ, Veerman, AJ, Pieters, R, Van Zantwijk, CH, Smets, LA, Van Wering, ER & van der Does-van den Berg, A In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood, (1997). 90, 2723–2729.

    CAS  PubMed  Google Scholar 

  8. Hongo, T, Yajima, S, Sakurai, M, Horikoshi, Y & Hanada, R In vitro drug sensitivity testing can predict induction failure and early relapse of childhood acute lymphoblastic leukemia. Blood, (1997). 89, 2959–2965.

    CAS  PubMed  Google Scholar 

  9. Kaspers, GJ, Pieters, R, Van Zantwijk, CH, Van Wering, ER, van der Does-van den Berg, A & Veerman, AJ Prednisolone resistance in childhood acute lymphoblastic leukemia: vitro–vivo correlations and cross-resistance to other drugs. Blood, (1998). 92, 259–266.

    CAS  PubMed  Google Scholar 

  10. Pieters, R, den Boer, ML, Durian, M, Janka, G, Schmiegelow, K, Kaspers, GJ, van Wering, ER & Veerman, AJ Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia – implications for treatment of infants. Leukemia, (1998). 12, 1344–1348.

    CAS  PubMed  Google Scholar 

  11. Maung, ZT, Reid, MM, Matheson, E, Taylor, PR, Proctor, SJ & Hall, AG Corticosteroid resistance is increased in lymphoblasts from adults compared with children: preliminary results of in vitro drug sensitivity study in adults with acute lymphoblastic leukaemia. Br J Haematol, (1995). 91, 93–100.

    CAS  PubMed  Google Scholar 

  12. Styczynski, J, Pieters, R, Huismans, DR, Schuurhuis, GJ, Wysocki, M & Veerman, AJ In vitro drug resistance profiles of adult versus childhood acute lymphoblastic leukaemia. Br J Haematol, (2000). 110, 813–818.

    CAS  PubMed  Google Scholar 

  13. Klumper, E, Pieters, R, Veerman, AJ, Huismans, DR, Loonen, AH, Hahlen, K, Kaspers, GJ, van Wering, ER, Hartmann, R & Henze, G In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood, (1995). 86, 3861–3868.

    CAS  PubMed  Google Scholar 

  14. Theriault, A, Boyd, E, Harrap, SB, Hollenberg, SM & Connor, JM Regional chromosomal assignment of the human glucocorticoid receptor gene to 5q31. Hum Genet, (1989). 83, 289–291.

    CAS  PubMed  Google Scholar 

  15. Hollenberg, SM & Evans, RM Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell, (1988). 55, 899–906.

    CAS  PubMed  Google Scholar 

  16. Tao, Y, Williams-Skipp, C & Scheinman, RI Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF–{kappa}B and induction of apoptosis. J Biol Chem, (2001). 276, 2329–2332.

    CAS  PubMed  Google Scholar 

  17. Dahlman-Wright, K, Wright, A, Gustafsson, JA & Carlstedt-Duke, J Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids. J Biol Chem, (1991). 266, 3107–3112.

    CAS  PubMed  Google Scholar 

  18. Zilliacus, J, Wright, AP, Carlstedt-Duke, J & Gustafsson, JA Structural determinants of DNA-binding specificity by steroid receptors. Mol Endocrinol, (1995). 9, 389–400.

    CAS  PubMed  Google Scholar 

  19. Picard, D & Yamamoto, KR Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J, (1987). 6, 3333–3340.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hollenberg, SM, Giguere, V, Segui, P & Evans, RM Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor. Cell, (1987). 49, 39–46.

    CAS  PubMed  Google Scholar 

  21. Barnes, PJ Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci, (1998). 94, 557–572.

    CAS  Google Scholar 

  22. Defranco, DB Role of molecular chaperones in subnuclear trafficking of glucocorticoid receptors. Kidney Int, (2000). 57, 1241–1249.

    CAS  PubMed  Google Scholar 

  23. Beato, M Gene regulation by steroid hormones. Cell, (1989). 56, 335–344.

    CAS  PubMed  Google Scholar 

  24. Tsai, SY, Carlstedt-Duke, J, Weigel, NL, Dahlman, K, Gustafsson, JA, Tsai, MJ & O’Malley, BW Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell, (1988). 55, 361–369.

    CAS  PubMed  Google Scholar 

  25. Cidlowski, JA, Bellingham, DL, Powell-Oliver, FE, Lubahn, DB & Sar, M Novel antipeptide antibodies to the human glucocorticoid receptor: recognition of multiple receptor forms in vitro and distinct localization of cytoplasmic and nuclear receptors. Mol Endocrinol, (1990). 4, 1427–1437.

    CAS  PubMed  Google Scholar 

  26. Chapman, MS, Askew, DJ, Kuscuoglu, U & Miesfeld, RL Transcriptional control of steroid-regulated apoptosis in murine thymoma cells. Mol Endocrinol, (1996). 10, 967–978.

    CAS  PubMed  Google Scholar 

  27. Reichardt, HM, Kaestner, KH, Tuckermann, J, Kretz, O, Wessely, O, Bock, R, Gass, P, Schmid, W, Herrlich, P, Angel, P & Schutz, G DNA binding of the glucocorticoid receptor is not essential for survival. Cell, (1998). 93, 531–541.

    CAS  PubMed  Google Scholar 

  28. Helmberg, A, Auphan, N, Caelles, C & Karin, M Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. EMBO J, (1995). 14, 452–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kofler, R The molecular basis of glucocorticoid-induced apoptosis of lymphoblastic leukemia cells. Histochem Cell Biol, (2000). 114, 1–7.

    CAS  PubMed  Google Scholar 

  30. Nazareth, LV & Thompson, EB Leukemic cell apoptosis caused by constitutively active mutant glucocorticoid receptor fragments. Recent Prog Horm Res, (1995). 50, 417–421.

    CAS  PubMed  Google Scholar 

  31. Kaspers, GJ, Pieters, R & Veerman, AP Glucocorticoid resistance in childhood leukemia. Int J Pediat Hematol/Oncol, (1997). 4, 583–596.

    Google Scholar 

  32. Burnstein, KL, Bellingham, DL, Jewell, CM, Powell-Oliver, FE & Cidlowski, JA Autoregulation of glucocorticoid receptor gene expression. Steroids, (1991). 56, 52–58.

    CAS  PubMed  Google Scholar 

  33. Webster, JC & Cidlowski, JA Downregulation of the glucocorticoid receptor. A mechanism for physiological adaptation to hormones. Ann NY Acad Sci, (1994). 746, 216–220.

    CAS  PubMed  Google Scholar 

  34. Shimojo, M, Hiroi, N, Yakushiji, F, Ueshiba, H, Yamaguchi, N & Miyachi, Y Differences in down-regulation of glucocorticoid receptor mRNA by cortisol, prednisolone and dexamethasone in HeLa cells. Endocrine J, (1995). 42, 629–636.

    CAS  Google Scholar 

  35. Andreae, J, Tripmacher, R, Weltrich, R, Rohde, W, Keitzer, R, Wahn, U, Paul, K & Buttgereit, F Effect of glucocorticoid therapy on glucocorticoid receptors in children with autoimmune diseases. Pediatr Res, (2001). 49, 130–135.

    CAS  PubMed  Google Scholar 

  36. Silva, CM, Powell-Oliver, FE, Jewell, CM, Sar, M, Allgood, VE & Cidlowski, JA Regulation of the human glucocorticoid receptor by long-term and chronic treatment with glucocorticoid. Steroids, (1994). 59, 436–442.

    CAS  PubMed  Google Scholar 

  37. Pujols, L, Mullol, J, Perez, M, Roca-Ferrer, J, Juan, M, Xaubet, A, Cidlowski, JA & Picado, C Expression of the human glucocorticoid receptor alpha and beta isoforms in human respiratory epithelial cells and their regulation by dexamethasone. Am J Respir Cell Mol Biol, (2001). 24, 49–57.

    CAS  PubMed  Google Scholar 

  38. Tonko, M, Ausserlechner, MJ, Bernhard, D, Helmberg, A & Kofler, R Gene expression profiles of proliferating vs. G1/G0 arrested human leukemia cells suggest a mechanism for glucocorticoid-induced apoptosis. FASEB J, (2001). 15, 693–699.

    CAS  PubMed  Google Scholar 

  39. Ramdas, J, Liu, W & Harmon, JM Glucocorticoid-induced cell death requires autoinduction of glucocorticoid receptor expression in human leukemic T cells. Cancer Res, (1999). 59, 1378–1385.

    CAS  PubMed  Google Scholar 

  40. Breslin, MB, Geng, CD & Vedeckis, WV Multiple promoters exist in the human gr gene, one of which is activated by glucocorticoids. Mol Endocrinol, (2001). 15, 1381–1395.

    CAS  PubMed  Google Scholar 

  41. Gametchu, B, Chen, F, Sackey, F, Powell, C & Watson, CS Plasma membrane-resident glucocorticoid receptors in rodent lymphoma and human leukemia models. Steroids, (1999). 64, 107–119.

    CAS  PubMed  Google Scholar 

  42. Sackey, FN, Watson, CS & Gametchu, B Cell cycle regulation of membrane glucocorticoid receptor in CCRF-CEM human ALL cells: correlation to apoptosis. Am J Physiol, (1997). 273, E571–583.

    CAS  PubMed  Google Scholar 

  43. Karl, M, Lamberts, SWJ, Detera-Wadleigh, SD, Encio, IJ, Stratakis, CA, Hurley, DM, Accili, D & Chrousos, GP Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. J Clin Endocrinol Metab, (1993). 76, 683–689.

    CAS  PubMed  Google Scholar 

  44. Hurley, DM, Accili, D, Stratakis, CA, Karl, M, Vamvakopoulos, N, Rorer, E, Constantine, K, Taylor, SI & Chrousos, GP Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest, (1991). 87, 680–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Karl, M, Lamberts, SW, Koper, JW, Katz, DA, Huizenga, NE, Kino, T, Haddad, BR, Hughes, MR & Chrousos, GP Cushing's disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Phys, (1996). 108, 296–307.

    CAS  PubMed  Google Scholar 

  46. Malchoff, DM, Brufsky, A, Reardon, G, McDermott, P, Javier, EC, Bergh, CH, Rowe, D & Malchoff, CD A mutation of the glucocorticoid receptor in primary cortisol resistance. J Clin Invest, (1993). 91, 1918–1925.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruiz, M, Lind, U, Gafvels, M, Eggertsen, G, Carlstedt-Duke, J, Nilsson, L, Holtmann, M, Stierna, P, Wikstrom, AC & Werner, S Characterization of two novel mutations in the glucocorticoid receptor gene in patients with primary cortisol resistance. Clin Endocrinol, (2001). 55, 363–371.

    CAS  Google Scholar 

  48. Feng, J, Zheng, J, Bennett, WP, Heston, LL, Jones, IR, Craddock, N & Sommer, SS Five missense variants in the amino-terminal domain of the glucocorticoid receptor: no association with puerperal psychosis or schizophrenia. Am J Med Genet, (2000). 96, 412–417.

    CAS  PubMed  Google Scholar 

  49. Koper, JW, Stolk, RP, de Lange, P, Huizenga, NA, Molijn, GJ, Pols, HA, Grobbee, DE, Karl, M, de Jong, FH, Brinkmann, AO & Lamberts, SW Lack of association between five polymorphisms in the human glucocorticoid receptor gene and glucocorticoid resistance. Hum Genet, (1997). 99, 663–668.

    CAS  PubMed  Google Scholar 

  50. Huizenga, NA, Koper, JW, De Lange, P, Pols, HA, Stolk, RP, Burger, H, Grobbee, DE, Brinkmann, AO, De Jong, FH & Lamberts, SW A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab, (1998). 83, 144–151.

    CAS  PubMed  Google Scholar 

  51. Lin, RCY, Wang, WYS & Morris, BJ High penetrance, overweight, and glucocorticoid receptor variant: case–control study. Br Med J, (1999). 319, 1337–1338.

    CAS  Google Scholar 

  52. Hillmann, AG, Ramdas, J, Multanen, K, Norman, MR & Harmon, JM Glucocorticoid receptor gene mutations in leukemic cells acquired in vitro and in vivo. Cancer Res, (2000). 60, 2056–2062.

    CAS  PubMed  Google Scholar 

  53. Tissing, WJE, Meijerink, JPP, den Boer, ML, Verschuuren, A, Koper, JW, Sonneveld, P & Pieters, R Polymorphisms in the glucocorticoid receptor gene in childhood leukemia. Leukemia, (2001). 15, 511(Abstr.)

    Google Scholar 

  54. Hollenberg, SM, Weinberger, C, Ong, ES, Cerelli, G, Oro, A, Lebo, R, Thompson, EB, Rosenfeld, MG & Evans, RM Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature, (1985). 318, 635–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Oakley, RH, Webster, JC, Jewell, CM, Sar, M & Cidlowski, JA Immunocytochemical analysis of the glucocorticoid receptor alpha isoform (GRalpha) using GRalpha–specific antibody. Steroids, (1999). 64, 742–751.

    CAS  PubMed  Google Scholar 

  56. Longui, CA, Vottero, A, Adamson, PC, Cole, DE, Kino, T, Monte, O & Chrousos, GP Low glucocorticoid receptor alpha/beta ratio in T-cell lymphoblastic leukemia. Horm Metab Res, (2000). 32, 401–406.

    CAS  PubMed  Google Scholar 

  57. Tissing, WJE, Lauten, M, Meijerink, JPP, den Boer, ML, Verschuuren, AC, Gerdes, K, Beger, C, Wiemer, EAC, Sonneveld, P, Welte, K, Schrappe, M & Pieters, R Glucocorticoid receptor splice variants alpha, beta and GR-P and in vivo glucocorticoid resistance in childhood acute lymphoblastic leukemia. Blood, (2001). 98, 313a(Abstr.)

    Google Scholar 

  58. Oakley, RH, Sar, M & Cidlowski, JA The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem, (1996). 271, 9550–9559.

    CAS  PubMed  Google Scholar 

  59. Oakley, RH, Webster, JC, Sar, M, Parker, CR Jr & Cidlowski, JA Expression and subcellular distribution of the beta-isoform of the human glucocorticoid receptor. Endocrinology, (1997). 138, 5028–5038.

    CAS  PubMed  Google Scholar 

  60. Hecht, K, Carlstedt-Duke, J, Stierna, P, Gustafsson, J, Bronnegard, M & Wikstrom, AC Evidence that the beta-isoform of the human glucocorticoid receptor does not act as a physiologically significant repressor. J Biol Chem, (1997). 272, 26659–26664.

    CAS  PubMed  Google Scholar 

  61. de Castro, M, Elliot, S, Kino, T, Bamberger, C, Karl, M, Webster, E & Chrousos, GP The non-ligand binding beta-isoform of the human glucocorticoid receptor (hGR beta): tissue levels, mechanism of action, and potential physiologic role. Mol Med, (1996). 2, 597–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Carlstedt-Duke, J Glucocorticoid receptor beta: view II. Trends Endocrinol Metab, (1999). 10, 339–342.

    CAS  PubMed  Google Scholar 

  63. Vottero, A & Chrousos, GP Glucocorticoid receptor beta: view I. Trends Endocrinol Metab, (1999). 10, 333–338.

    CAS  PubMed  Google Scholar 

  64. Leung, DYM, Hamid, Q, Vottero, A, Szefler, SJ, Surs, W, Minshall, E, Chrousos, GP & Klemm, DJ Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor beta. J Exp Med, (1997). 186, 1567–1574.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gagliardo, R, Chanez, P, Vignola, AM, Bousquet, J, Vachier, I, Godard, P, Bonsignore, G, Demoly, P & Mathieu, M Glucocorticoid receptor alpha and beta in glucocorticoid dependent asthma. Am J Respir Crit Care Med, (2000). 162, 7–13.

    CAS  PubMed  Google Scholar 

  66. Oakley, RH, Jewell, CM, Yudt, MR, Bofetiado, DM & Cidlowski, JA The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J Biol Chem, (1999). 274, 27857–27866.

    CAS  PubMed  Google Scholar 

  67. Bamberger, CM, Bamberger, AM, de Castro, M & Chrousos, GP Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest, (1995). 95, 2435–2441.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. de Lange, P, Koper, JW, Brinkmann, AO, de Jong, FH & Lamberts, SW Natural variants of the beta isoform of the human glucocorticoid receptor do not alter sensitivity to glucocorticoids. Mol Cell Endocrinol, (1999). 153, 163–168.

    CAS  PubMed  Google Scholar 

  69. Brogan, IJ, Murray, IA, Cerillo, G, Needham, M, White, A & Davis, JR Interaction of glucocorticoid receptor isoforms with transcription factors AP-1 and NF-kappaB: lack of effect of glucocorticoid receptor beta. Mol Cell Endocrinol, (1999). 157, 95–104.

    CAS  PubMed  Google Scholar 

  70. Rivers, C, Levy, A, Hancock, J, Lightman, S & Norman, M Insertion of an amino acid in the DNA-binding domain of the glucocorticoid receptor as a result of alternative splicing. J Clin Endocrinol Metab, (1999). 84, 4283–4286.

    CAS  PubMed  Google Scholar 

  71. Gerdes, K, Beger, C, Lauten, M, Fernandez-Munoz, I, Tissing, WJE, Pieters, R, Welte, K & Schrappe, M Quantification of the glucocorticoid receptor and its splice variant gamma in childhood acute lymphoblastic leukemia using real-time PCR. Blood, (2001). 98, 113a(Abstr.)

    Google Scholar 

  72. Ray, DW, Davis, JRE, White, A & Clark, AJL Glucocorticoid receptor structure and function in glucocorticoid-resistant small cell lung carcinoma cells. Cancer Res, (1996). 56, 3276–3280.

    CAS  PubMed  Google Scholar 

  73. Moalli, PA, Pillay, S, Krett, NL & Rosen, ST Alternatively spliced glucocorticoid receptor messenger RNAs in glucocorticoid-resistant human multiple myeloma cells. Cancer Res, (1993). 53, 3877–3879.

    CAS  PubMed  Google Scholar 

  74. Krett, NL, Pillay, S, Moalli, PA, Greipp, PR & Rosen, ST A variant glucocorticoid receptor messenger RNA is expressed in multiple myeloma patients. Cancer Res, (1995). 55, 2727–2729.

    CAS  PubMed  Google Scholar 

  75. Segeren, CM, de Lange, P, Wiemer, E, Koper, JW, Brinkman, AO, De Jong, FH, Lamberts, SWJ & Sonneveld, P Preferential expression of a non-functional glucocorticoid receptor in hematological malignancies. Blood, (1998). 92, 283b(Abstr.)

    Google Scholar 

  76. Segeren, CM, Sonneveld, P, de Lange, P, Wiemer, E, Koper, JW, van Zon, A, de Jong, FH & Lamberts, SWJ Molecular mechanisms of therapy resistance in multiple myeloma: the role of the non-functional glucocorticoid receptor delta. Blood, (1999). 94, 593a(Abstr.)

    Google Scholar 

  77. de Lange, P, Segeren, CM, Koper, JW, Wiemer, E, Sonneveld, P, Brinkmann, AO, White, A, Brogan, IJ, de Jong, FH & Lamberts, SW Expression in hematological malignancies of a glucocorticoid receptor splice variant that augments glucocorticoid receptor-mediated effects in transfected cells. Cancer Res, (2001). 61, 3937–3941.

    CAS  PubMed  Google Scholar 

  78. Bodwell, JE, Webster, JC, Jewell, CM, Cidlowski, JA, Hu, JM & Munck, A Glucocorticoid receptor phosphorylation: overview, function and cell cycle-dependence. J Steroid Biochem Mol Biol, (1998). 65, 91–99.

    CAS  PubMed  Google Scholar 

  79. Bourgeois, S, Gruol, DJ, Newby, RF & Rajah, FM Expression of an mdr gene is associated with a new form of resistance to dexamethasone-induced apoptosis. Mol Endocrinol, (1993). 7, 840–851.

    CAS  PubMed  Google Scholar 

  80. Ueda, K, Kino, K, Taguchi, Y, Yamada, K, Saeki, T, Tanigawara, Y & Komano, T Role of P-glycoprotein in the transport of hormones and peptides. In: Gupta S, Tsuruo T (eds). Multidrug Resistance in Cancer Cells, John Wiley & Sons: Chichester (1996). 303–319.

    Google Scholar 

  81. den Boer, ML, Pieters, R, Kazemier, KM, Rottier, MM, Zwaan, CM, Kaspers, GJ, Janka-Schaub, G, Henze, G, Creutzig, U, Scheper, RJ & Veerman, AJ Relationship between major vault protein/lung resistance protein, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in childhood leukemia. Blood, (1998). 91, 2092–2098.

    CAS  PubMed  Google Scholar 

  82. Wuchter, C, Karawajew, L, Ruppert, V, Schrappe, M, Harbott, J, Ratei, R, Dorken, B & Ludwig, WD Constitutive expression levels of CD95 and Bcl-2 as well as CD95 function and spontaneous apoptosis in vitro do not predict the response to induction chemotherapy and relapse rate in childhood acute lymphoblastic leukaemia. Br J Haematol, (2000). 110, 154–160.

    CAS  PubMed  Google Scholar 

  83. Maung, ZT, Hogarth, L, Reid, MM, Proctor, SJ, Hamilton, PJ & Hall, AG Raised intracellular glutathione levels correlate with in vitro resistance to cytotoxic drugs in leukaemic cells from patients with acute lymphoblastic leukemia. Leukemia, (1994). 8, 1487–1491.

    CAS  PubMed  Google Scholar 

  84. Kearns, PR, Pieters, R, Rottier, MM, Pearson, AD & Hall, AG Raised blast glutathione levels are associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood, (2001). 97, 393–398.

    CAS  PubMed  Google Scholar 

  85. Den Boer, ML, Pieters, R, Kazemier, KM, Janka-Schaub, GE, Henze, G, Creutzig, U, Kaspers, GJ, Kearns, PR, Hall, AG, Pearson, AD & Veerman, AJ Different expression of glutathione S-transferase alpha, mu and pi in childhood acute lymphoblastic and myeloid leukaemia. Br J Haematol, (1999). 104, 321–327.

    CAS  PubMed  Google Scholar 

  86. Anderer, G, Schrappe, M, Brechlin, AM, Lauten, M, Muti, P, Welte, K & Stanulla, M Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics, (2000). 10, 715–726.

    CAS  PubMed  Google Scholar 

  87. Pratt, WB The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem, (1993). 268, 21455–21458.

    CAS  PubMed  Google Scholar 

  88. Rajapandi, T, Greene, LE & Eisenberg, E The molecular chaperones Hsp90 and Hsp70 are both necessary and sufficient to activate hormone binding by glucocorticoid receptor. J Biol Chem, (2000). 275, 22597–22604.

    CAS  PubMed  Google Scholar 

  89. Kojika, S, Sugita, K, Inukai, T, Saito, M, Iijima, K, Tezuka, T, Goi, K, Shiraishi, K, Mori, T, Okazaki, T, Kagami, K, Ohyama, K & Nakazawa, S Mechanisms of glucocorticoid resistance in human leukemic cells: implication of abnormal 90 and 70 kDa heat shock proteins. Leukemia, (1996). 10, 994–999.

    CAS  PubMed  Google Scholar 

  90. Kanelakis, KC, Morishima, Y, Dittmar, KD, Galigniana, MD, Takayama, S, Reed, JC & Pratt, WB Differential effects of the hsp70-binding protein BAG-1 on glucocorticoid receptor folding by the hsp90-based chaperone machinery. J Biol Chem, (1999). 274, 34134–34140.

    CAS  PubMed  Google Scholar 

  91. Kullmann, M, Schneikert, J, Moll, J, Heck, S, Zeiner, M, Gehring, U & Cato, AC RAP46 is a negative regulator of glucocorticoid receptor action and hormone-induced apoptosis. J Biol Chem, (1998). 273, 14620–14625.

    CAS  PubMed  Google Scholar 

  92. Scheinman, RI, Gualberto, A, Jewell, CM, Cidlowski, JA & Baldwin, AS Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol, (1995). 15, 943–953.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Auphan, N, DiDonato, JA, Rosette, C, Helmberg, A & Karin, M Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science, (1995). 270, 286–290.

    CAS  PubMed  Google Scholar 

  94. Scheinman, RI, Cogswell, PC, Lofquist, AK & Baldwin, AS Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science, (1995). 270, 283–286.

    CAS  PubMed  Google Scholar 

  95. Wang, W, Wykrzykowska, J, Johnson, T, Sen, R & Sen, J A NF-kappa B/c-myc-dependent survival pathway is targeted by corticosteroids in immature thymocytes. J Immunol, (1999). 162, 314–322.

    CAS  PubMed  Google Scholar 

  96. Ramdas, J & Harmon, JM Glucocorticoid-induced apoptosis and regulation of NF-kappaB activity in human leukemic T cells. Endocrinology, (1998). 139, 3813–3821.

    CAS  PubMed  Google Scholar 

  97. Heck, S, Bender, K, Kullmann, M, Gottlicher, M, Herrlich, P & Cato, AC I kappaB alpha-independent downregulation of NF-kappaB activity by glucocorticoid receptor. EMBO J, (1997). 16, 4698–4707.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kordes, U, Krappmann, D, Heissmeyer, V, Ludwig, WD & Scheidereit, C Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia, (2000). 14, 399–402.

    CAS  PubMed  Google Scholar 

  99. Bailey, S, Hall, AG, Pearson, AD & Redfern, CP The role of AP-1 in glucocorticoid resistance in leukaemia. Leukemia, (2001). 15, 391–397.

    CAS  PubMed  Google Scholar 

  100. Geley, S, Fiegl, M, Hartmann, BL & Kofler, R Genes mediating glucocorticoid effects and mechanisms of their regulation. Rev Physiol Biochem Pharmacol, (1996). 128, 1–97.

    CAS  PubMed  Google Scholar 

  101. Thulasi, R, Harbour, DV & Thompson, EB Suppression of c-myc is a critical step in glucocorticoid-induced human leukemic cell lysis. J Biol Chem, (1993). 268, 18306–18312.

    CAS  PubMed  Google Scholar 

  102. Thompson, EB, Medh, RD, Zhou, F, Ayala-Torres, S, Ansari, N, Zhang, W & Johnson, BH Glucocorticoids, oxysterols, and cAMP with glucocorticoids each cause apoptosis of CEM cells and suppress c-myc. J Steroid Biochem Mol Biol, (1999). 69, 453–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Medh, RD, Wang, A, Zhou, F & Thompson, EB Constitutive expression of ectopic c-Myc delays glucocorticoid-evoked apoptosis of human leukemic CEM-C7 cells. Oncogene, (2001). 20, 4629–4639.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Martins, TC & Aguas, AP Involvement of c-myc in the resistance of non-obese diabetic mice to glucocorticoid-induced apoptosis. Immunology, (1998). 95, 377–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Löffler, M, Ausserlechner, MJ, Tonko, M, Hartmann, BL, Bernhard, D, Geley, S, Helmberg, A & Kofler, R c-Myc does not prevent glucocorticoid-induced apoptosis of human leukemic lymphoblasts. Oncogene, (1999). 18, 4626–4631.

    PubMed  Google Scholar 

  106. Evan, GI, Wyllie, AH, Gilbert, CS, Littlewood, TD, Land, H, Brooks, M, Waters, CM, Penn, LZ & Hancock, DC Induction of apoptosis in fibroblasts by c-myc protein. Cell, (1992). 69, 119–128.

    CAS  PubMed  Google Scholar 

  107. Obexer, P, Certa, U, Kofler, R & Helmberg, A Expression profiling of glucocorticoid-treated T-ALL cell lines: rapid repression of multiple genes involved in RNA-, protein- and nucleotide synthesis. Oncogene, (2001). 20, 4324–4336.

    CAS  PubMed  Google Scholar 

  108. Mann, CL, Hughes, FM Jr & Cidlowski, JA Delineation of the signalling pathways involved in glucocorticoid-induced and spontaneous apoptosis of rat thymocytes. Endocrinology, (2000). 141, 528–538.

    CAS  PubMed  Google Scholar 

  109. Hakem, R, Hakem, A, Duncan, GS, Henderson, JT, Woo, M, Soengas, MS, Elia, A, de la Pompa, JL, Kagi, D, Khoo, W, Potter, J, Yoshida, R, Kaufman, SA, Lowe, SW, Penninger, JM & Mak, TW Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell, (1998). 94, 339–352.

    CAS  PubMed  Google Scholar 

  110. Kuida, K, Haydar, TF, Kuan, CY, Gu, Y, Taya, C, Karasuyama, H, Su, MS, Rakic, P & Flavell, RA Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell, (1998). 94, 325–337.

    CAS  PubMed  Google Scholar 

  111. Ashkenazi, A & Dixit, VM Death receptors: signaling and modulation. Science, (1998). 281, 1305–1308.

    CAS  PubMed  Google Scholar 

  112. Brady, HJ, Salomons, GS, Bobeldijk, RC & Berns, AJ T cells from baxalpha transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53. gene product in. EMBO J, (1996). 15, 1221–1230.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hartmann, BL, Geley, S, Loffler, M, Hattmannstorfer, R, Strasser-Wozak, EM, Auer, B & Kofler, R Bcl-2 interferes with the execution phase, but not upstream events, in glucocorticoid-induced leukemia apoptosis. Oncogene, (1999). 18, 713–719.

    CAS  PubMed  Google Scholar 

  114. Alnemri, ES, Fernandes, TF, Haldar, S, Croce, CM & Litwack, G Involvement of BCL-2 in glucocorticoid-induced apoptosis of human pre-B- leukemias. Cancer Res, (1992). 52, 491–495.

    CAS  PubMed  Google Scholar 

  115. Caron-Leslie, LA, Evans, RB & Cidlowski, JA Bcl-2 inhibits glucocorticoid-induced apoptosis but only partially blocks calcium ionophore or cycloheximide-regulated apoptosis in S49 cells. FASEB J, (1994). 8, 639–645.

    CAS  PubMed  Google Scholar 

  116. Smets, LA, Van den Berg, J, Acton, D, Top, B, Van Rooij, H & Verwijs-Janssen, M BCL-2 expression and mitochondrial activity in leukemic cells with different sensitivity to glucocorticoid-induced apoptosis. Blood, (1994). 84, 1613–1619.

    CAS  PubMed  Google Scholar 

  117. Salomons, GS, Smets, LA, Verwijs-Janssen, M, Hart, AA, Haarman, EG, Kaspers, GJ, Wering, EV, Der Does-Van Den Berg, AV & Kamps, WA Bcl-2 family members in childhood acute lymphoblastic leukemia: relationships with features at presentation, in vitro and in vivo drug response and long-term clinical outcome. Leukemia, (1999). 13, 1574–1580.

    CAS  PubMed  Google Scholar 

  118. Coustan-Smith, E, Kitanaka, A, Pui, CH, McNinch, L, Evans, WE, Raimondi, SC, Behm, FG, Arico, M & Campana, D Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood, (1996). 87, 1140–1146.

    CAS  PubMed  Google Scholar 

  119. Haarman, EG, Kaspers, GJ, Pieters, R, van Zantwijk, CH, Broekema, GJ, Hahlen, K & Veerman, AJ. BCL-2 expression in childhood leukemia versus spontaneous apoptosis, drug induced apoptosis, and in vitro drug resistance. Adv Exp Med Biol, (1999). 457, 325–333.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tissing, W., Meijerink, J., den Boer, M. et al. Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 17, 17–25 (2003). https://doi.org/10.1038/sj.leu.2402733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402733

Keywords

This article is cited by

Search

Quick links